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Adaptive computing systems

two complementary, and sometimes contradictory, requirements:

adaptability to changes in their environment or functionality
dependability w.r.t. their goal and persons in contact

administration loops in computing systems

reacting to changes in:
operation environment
implementation platform
application objectives

automated
too large or complex
sometimes too fast

for manual administration

−→ Autonomic Computing : self-managed systems
automated administration in the form of a feedback loop
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Control for dependability

w.r.t. damage in system finality (information, business, ...)
w.r.t. safety (goods, persons, ...)

specificity of autonomic systems : automated feedback loop

need for control of automated behaviors
they can oscillate, diverge, react too slowly, ...
objectives can be multiple and interfere

−→ design theories and techniques from Control Theory

new interaction between control and computer science
computer science for control systems : embedded systems
theoretical informatics and control theory : hybrid systems

→ control theory for computing systems considered here
for well-behaved automated computer management loops
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Autonomic computing

Autonomic Computing Initiative (ACI) initiated by IBM, early 2000

networked computing systems able to manage themselves, trough
decisions made automatically, without direct human intervention

autonomic objectives
Self-configuration
Self-healing
Self-optimization
Self-protection

can interact, interferences can
require coordination

autonomic loop
MAPE-K

sensor

execute
knowledge

monitor

analyse plan

actuator

managed element
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Control for feedback computing

for guarantees on behavior of automated closed-looped systems

control theory: framework of methods and techniques
to build automated systems with well-mastered behavior

sensors and actuators connected to given “plant” to be controlled
model of the dynamic behavior of the process,
control objective specified explicitly

−→ on these bases the control solution is formally derived

Control for computing systems: Feedback Computing
not usual in Computer Science, still only emerging

advantages: rigorous, supports uncertainties, stability, robustness,
difficulties: modeling and translating management objectives

to actual system-level sensors and actuators,
to appropriate, useable control models

most computing systems not designed to be controllable
8/24
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Reactive languages, synchronous programming

Modelling formalism and programming language
reaction to input flows → output flows
data-flow nodes and equations ; mode automata (FSM)
parallel (synchronous) and hierarchical composition

synchronous languages, (25+ years)
tools: compilers (e.g., Heptagon), code generation, verification, ...

example: delayable task control (in Heptagon)

= false = false a a

= true a

e /
r and c / s

 c / s

r and not c / s

Active

WaitIdle

delayable (r, c, e) = a, s
node delayable(r,c,e:bool) returns (a,s:bool)
let automaton
state Idle do
a = false; s = r and c
until r and c then Active

| r and not c then Wait
state Wait do a = false; s = c
until c then Active

state Active do a = true; s=false
until e then Idle

end tel
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Discrete controller synthesis (DCS): principle

Goal
Enforcing a temporal property Φ on a system

on which Φ does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Partition of variables : controllable (Y c), uncontrollable (Y u)
Computation of a controller such that the controlled system
satisfies Φ by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)
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BZR programming language [http://bzr.inria.fr]

built on top of nodes in Heptagon
to each contract, associate controllable variables, local
at compile-time (user-friendly DCS),

compute a controller for each component
when no controllable inputs : verification by model-checking
step and reset functions ; executable code : C, Java, ...

DCS ctrlr

model
automaton

system
managed

BZR program

executemonitor

node delay
(new_sig: bool; c:bool)
returns (out: bool)
let automaton
state Idle
do out=new_sig & c
until new_sig & not c

then Waiting
| new_sig & c then Idle
state Waiting
do out=c
until c then Idle

end tel

node main
(signal1, signal2: bool)
returns (d1, d2:bool)

contract
enforce not (d1 & d2)
with (c1,c2:bool)
let
d1 = delay(signal1, c1);
d2 = delay(signal2, c2);
tel

& G. Delaval & H. Marchand [ACM LCTES’10] [jDEDS13] 12/24
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Need for modularity

Advantages of DCS approach

(i) high-level language support
(ii) correctness of the controller,
(iii) maximal permissiveness of controllers
(iv) automated formal synthesis of these controllers
(v) automated executable code generation in C or Java.

Need for modularity
scalability: state-space exploration algorithms are exponential
re-usability of management components

13/24
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Modularity in BZR

node(...) = ...
assume A enforce G
with c1, ...cq

subnode1(...) = ...
assume A1 enforce G1

; . . . ;
subnoden(...) = ...
assume An enforce Gn

Modular contracts in Heptagon/BZR

based on the modular compilation of the nodes

assume not only A, but also that the n sub-nodes each do
enforce their contract:

∧n
i=1(Ai =⇒ Gi ).

enforce G as well as the assumptions of sub-nodes:
∧n

i=1 Ai
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General design method

An interpretation of the MAPE-K loop

outputs

managed system

inputs

current state

controllables

transition functionobjectives / controller Typical modeled features
observability & controllability

resources: levels, on/off,
tasks: activity, start, end,

checkpoints, modes
application: task graph,

workflow

Granularity levels, depending on decision problem

lowest : MEs : (relatively) fast, low overhead
level of AM : slower pace, sporadic ; limited by dynamics of system
level of AMs coordination : even slower, can afford

synchronizations, distributed decisions e.g. leader election
16/24
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Reconfiguration control in DPR FPGA-based architectures

Considered class of architectures ANR Famous

transition function
tiles exclusivity, on/off

bound power peak / batt.
reach end of DAG

mode or delay
sw. on/off tile

progress in DAG (incl. possible futures)
activity of task modes (incl. costs),

state of tiles and battery

battery charge
ends of tasks start task mode

sw. on/off tile

FPGA, tasks, application, battery

architecture : tiles A1..n,
(sleep mode) ; battery
tasks : delayable ; modes
(tiles, power, WCET, ...)
application : task graph

reconfiguration policy
1 resource usage : exclusive tiles A1-A4
2 energy : tiles active if and only if needed
3 power peak : bounded w.r.t battery level
4 reachability: application graph end
5 optimizing e.g., global power peak 17/24
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Modelling for in DPR FPGA control [ICAC13]

ActiSlei

acti = true

acti = false
c_ai

not c_ai

c_ai

acti

RMi

I
req/rA

A
eA/rB,rC

B,C D T
eD

eA,eB,eC,eD
rA,rB,rC,rD

C

eB and eC/rD

eB

eC

eC/rD

B eB/rD

req

Application

WA

IA

XA
1 XA

2

rA, c1
rA, c2

rA, not c

c2

eA
eA

c1

  ({A1},
200,180)

 ({A3,A4},
 100,250)

({},0,0)

({},0,0)

TMA

rA eA

c1,c2
es

es=XA
1 es=W es=XA

2

es=I

rs,wt,pp

H M L

down

upup

down
down

st=h st=m st=l

stup

BM

Generic models

tiles RMi , task graph,
(two-modes) tasks, battery

global model :
composition of instances

reconfiguration policy
Objective 1 to 3 : invariance e.g., for 3 :

PP < (v1 if st = h else v2 if st = m else v3 if st = l)
Objective 4 : reachability of terminal state T
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Implementation of DPR FPGA control

Yuc$
X$

Reconfigurable-System-
-
-
-
$
$
$
$
$

Reconfigurable-
Hardware-

-
CPU-
-

Data$
in$

Data$
out$$Peripherals$(ICAP,$Ba9ery,$T°,$…)$$

sys_reset();!
processing_start();!
while(){!

!processing_control();!
!get_yuc();!
!sys_step(Yuc,X);!
!configure_hw_sw(X);!

}!
…!

Controller$
(see$DCS$Fig.5)$

c 

calling executable code generated by BZR
call reset function to initialize sates
loop for cyclic reaction :

acquire sensor input
construct automaton input Yuc
call step function to make transition and decisions
transform automaton ouput X into calls to OS API (start, ...)

19/24
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Coordination of administration loops

Administration loops and their coordination ANR Ctrl-Green

transition function
objectives 1−5

state of activity of managers

    rem or rep
suspend add, 

delay Incr, Decr

add, rem, rep,
Incr, Decr

o, u, fail, i, d
notif. : na, nr, e

autonomic managers for sizing, repair, consolidation
multi−tier servers system

multi-tier applications :
replicated web servers ;
load balancers
autonomic managers :
Self-sizing ; Self-repair ;
Consolidation
problems : over-reaction

reconfiguration policy

1 In a replicated tier, avoid size-up when repairing

2 avoid size-down in successor tier when repairing predecessor

3 when consolidating, avoid self-sizing or repairing

4 Wait until repairs or add finish before consolidation decreasing,
and until removals finish before increasing

20/24



Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Modelling for coordination control [jFGCS14]

S1 S2

nl /

ml / la

       ms/ sa

cl, cs,

andcs

andcl

=False =Truess

(la, sa, s) = ctrl−mgr(          ml, ms, nl)
i and not ci

IdleWaitI WaitD
d and not cd

cd / sd

i and ci /
si

d and cd /
sd

e / e /

ci / si

DI

Decr = false Decr Decr
IncrIncr

= false 
= false 

= false 
= false 

Decr= false = true Decr
Incr = true = false Incr

= false Incr

(si, sd, Incr, Decr ) = consolidation (ci, cd, i, d, e)

Generic models

Self-sizing control
Self-repair control
Consolidation control

models instantiated for each AM
composition gives global behavior

reconfiguration policy

1 not (repairing and add)

2 not (repairingL and rem)

3 not (repairingpred and remsucc)

4 ... 21/24
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Modular coordination control [CBSE14]

Repair Sizing

CtrlrM1

Coord-rep. tier

Repair Coord-rep. tier

CtrlrM2

Coord-lb-Rep. tier

Coord-lb-Rep. tier Coord-lb-Rep. tier

CtrlrM3

Multi-tier system

Bottom-up re-use of nodes
replicated servers tier: Coord-rep. tier

coordinating one Repair and one Sizing
load-balanced tier: Coord-lb-Rep. tier

coordinating one Repair (for LB) and one of the former
application: Multi-tier system

coordinating two of the former
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Conclusions & perspectives

Results
overview on discrete control-based design of autonomic computing

tool-supported method, reactive language & discrete control
validation in domains from software components and smart
environments to hardware reconfigurable architectures.
control-based techniques offer, at the same time,

self-adaptation and predictability

Perspectives

Modeling : other aspects of computing systems (memory, ...)
Expressivity and scalability : logico-numeric
High-level languages : Domain Specific Languages (DSLs)
Adaptive discrete control : not much theory yet
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