
Discrete control-based design of adaptive and
autonomic computing systems

Xin An 1 Gwenaël Delaval 2 Jean-Philippe Diguet 3

Abdoulaye Gamatié 4 Soguy Gueye 2 Hervé Marchand 5

Noël de Palma 2 Eric Rutten 6

1: Hefei University of Technology, Hefei, China, xin.an@hfut.edu.cn

2: LIG, Grenoble, France, gwenael.delaval@imag.fr, Soguy-Mak-Kare.Gueye@imag.fr,
noel.depalma@imag.fr

3: Lab-STICC, Lorient, France, jean-philippe.diguet@univ-ubs.fr

4: LIRMM, Montpellier, France, abdoulaye.gamatie@lirmm.fr

5: INRIA, Rennes, France, herve.marchand@inria.fr

6: INRIA, Grenoble, France, eric.rutten@inria.fr,
https://team.inria.fr/ctrl-a/members/eric-rutten

January 29, 2015

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems

3 BZR language

4 Discrete feedback computing

5 Conclusion

2/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems

3 BZR language

4 Discrete feedback computing

5 Conclusion

3/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Adaptive computing systems

two complementary, and sometimes contradictory, requirements:

adaptability to changes in their environment or functionality
dependability w.r.t. their goal and persons in contact

administration loops in computing systems

reacting to changes in:
operation environment
implementation platform
application objectives

automated
too large or complex
sometimes too fast

for manual administration

−→ Autonomic Computing : self-managed systems
automated administration in the form of a feedback loop

4/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Control for dependability

w.r.t. damage in system finality (information, business, ...)
w.r.t. safety (goods, persons, ...)

specificity of autonomic systems : automated feedback loop

need for control of automated behaviors
they can oscillate, diverge, react too slowly, ...
objectives can be multiple and interfere

−→ design theories and techniques from Control Theory

new interaction between control and computer science
computer science for control systems : embedded systems
theoretical informatics and control theory : hybrid systems

→ control theory for computing systems considered here
for well-behaved automated computer management loops

5/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems
Autonomic computing
Control for feedback computing
Reactive languages, verification and control

3 BZR language

4 Discrete feedback computing

5 Conclusion

6/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Autonomic computing

Autonomic Computing Initiative (ACI) initiated by IBM, early 2000

networked computing systems able to manage themselves, trough
decisions made automatically, without direct human intervention

autonomic objectives
Self-configuration
Self-healing
Self-optimization
Self-protection

can interact, interferences can
require coordination

autonomic loop
MAPE-K

sensor

execute
knowledge

monitor

analyse plan

actuator

managed element

7/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Control for feedback computing

for guarantees on behavior of automated closed-looped systems

control theory: framework of methods and techniques
to build automated systems with well-mastered behavior

sensors and actuators connected to given “plant” to be controlled
model of the dynamic behavior of the process,
control objective specified explicitly

−→ on these bases the control solution is formally derived

Control for computing systems: Feedback Computing
not usual in Computer Science, still only emerging

advantages: rigorous, supports uncertainties, stability, robustness,
difficulties: modeling and translating management objectives

to actual system-level sensors and actuators,
to appropriate, useable control models

most computing systems not designed to be controllable
8/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Reactive languages, synchronous programming

Modelling formalism and programming language
reaction to input flows → output flows
data-flow nodes and equations ; mode automata (FSM)
parallel (synchronous) and hierarchical composition

synchronous languages, (25+ years)
tools: compilers (e.g., Heptagon), code generation, verification, ...

example: delayable task control (in Heptagon)

= false = false a a

= true a

e /
r and c / s

 c / s

r and not c / s

Active

WaitIdle

delayable (r, c, e) = a, s
node delayable(r,c,e:bool) returns (a,s:bool)
let automaton
state Idle do
a = false; s = r and c
until r and c then Active

| r and not c then Wait
state Wait do a = false; s = c
until c then Active

state Active do a = true; s=false
until e then Idle

end tel

9/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Discrete controller synthesis (DCS): principle

Goal
Enforcing a temporal property Φ on a system

on which Φ does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Partition of variables : controllable (Y c), uncontrollable (Y u)
Computation of a controller such that the controlled system
satisfies Φ by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

10/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Discrete controller synthesis (DCS): principle

Goal
Enforcing a temporal property Φ on a system

on which Φ does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Trans State Out
ZY

Partition of variables : controllable (Y c), uncontrollable (Y u)
Computation of a controller such that the controlled system
satisfies Φ by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

10/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Discrete controller synthesis (DCS): principle

Goal
Enforcing a temporal property Φ on a system

on which Φ does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Y c

Y u Trans State Out
ZY

Partition of variables : controllable (Y c), uncontrollable (Y u)

Computation of a controller such that the controlled system
satisfies Φ by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

10/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Discrete controller synthesis (DCS): principle

Goal
Enforcing a temporal property Φ on a system

on which Φ does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Ctrlr Y c

Y u Trans State Out
ZY

Partition of variables : controllable (Y c), uncontrollable (Y u)
Computation of a controller such that the controlled system
satisfies Φ by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

10/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems

3 BZR language
The BZR language for tool-supported design
Modularity in BZR

4 Discrete feedback computing

5 Conclusion

11/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

BZR programming language [http://bzr.inria.fr]

built on top of nodes in Heptagon
to each contract, associate controllable variables, local
at compile-time (user-friendly DCS),

compute a controller for each component
when no controllable inputs : verification by model-checking
step and reset functions ; executable code : C, Java, ...

DCS ctrlr

model
automaton

system
managed

BZR program

executemonitor

node delay
(new_sig: bool; c:bool)
returns (out: bool)
let automaton
state Idle
do out=new_sig & c
until new_sig & not c

then Waiting
| new_sig & c then Idle
state Waiting
do out=c
until c then Idle

end tel

node main
(signal1, signal2: bool)
returns (d1, d2:bool)

contract
enforce not (d1 & d2)
with (c1,c2:bool)
let
d1 = delay(signal1, c1);
d2 = delay(signal2, c2);
tel

& G. Delaval & H. Marchand [ACM LCTES’10] [jDEDS13] 12/24

http://bzr.inria.fr

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Need for modularity

Advantages of DCS approach

(i) high-level language support
(ii) correctness of the controller,
(iii) maximal permissiveness of controllers
(iv) automated formal synthesis of these controllers
(v) automated executable code generation in C or Java.

Need for modularity
scalability: state-space exploration algorithms are exponential
re-usability of management components

13/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Modularity in BZR

node(...) = ...
assume A enforce G
with c1, ...cq

subnode1(...) = ...
assume A1 enforce G1

; . . . ;
subnoden(...) = ...
assume An enforce Gn

Modular contracts in Heptagon/BZR

based on the modular compilation of the nodes

assume not only A, but also that the n sub-nodes each do
enforce their contract:

∧n
i=1(Ai =⇒ Gi).

enforce G as well as the assumptions of sub-nodes:
∧n

i=1 Ai

14/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems

3 BZR language

4 Discrete feedback computing
General design method
Reconfiguration control in DPR FPGA-based architectures
Coordination of administration loops

5 Conclusion

15/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

General design method

An interpretation of the MAPE-K loop

outputs

managed system

inputs

current state

controllables

transition functionobjectives / controller Typical modeled features
observability & controllability

resources: levels, on/off,
tasks: activity, start, end,

checkpoints, modes
application: task graph,

workflow

Granularity levels, depending on decision problem

lowest : MEs : (relatively) fast, low overhead
level of AM : slower pace, sporadic ; limited by dynamics of system
level of AMs coordination : even slower, can afford

synchronizations, distributed decisions e.g. leader election
16/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Reconfiguration control in DPR FPGA-based architectures

Considered class of architectures ANR Famous

transition function
tiles exclusivity, on/off

bound power peak / batt.
reach end of DAG

mode or delay
sw. on/off tile

progress in DAG (incl. possible futures)
activity of task modes (incl. costs),

state of tiles and battery

battery charge
ends of tasks start task mode

sw. on/off tile

FPGA, tasks, application, battery

architecture : tiles A1..n,
(sleep mode) ; battery
tasks : delayable ; modes
(tiles, power, WCET, ...)
application : task graph

reconfiguration policy
1 resource usage : exclusive tiles A1-A4
2 energy : tiles active if and only if needed
3 power peak : bounded w.r.t battery level
4 reachability: application graph end
5 optimizing e.g., global power peak 17/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Modelling for in DPR FPGA control [ICAC13]

ActiSlei

acti = true

acti = false
c_ai

not c_ai

c_ai

acti

RMi

I
req/rA

A
eA/rB,rC

B,C D T
eD

eA,eB,eC,eD
rA,rB,rC,rD

C

eB and eC/rD

eB

eC

eC/rD

B eB/rD

req

Application

WA

IA

XA
1 XA

2

rA, c1
rA, c2

rA, not c

c2

eA
eA

c1

 ({A1},
200,180)

 ({A3,A4},
 100,250)

({},0,0)

({},0,0)

TMA

rA eA

c1,c2
es

es=XA
1 es=W es=XA

2

es=I

rs,wt,pp

H M L

down

upup

down
down

st=h st=m st=l

stup

BM

Generic models

tiles RMi , task graph,
(two-modes) tasks, battery

global model :
composition of instances

reconfiguration policy
Objective 1 to 3 : invariance e.g., for 3 :

PP < (v1 if st = h else v2 if st = m else v3 if st = l)
Objective 4 : reachability of terminal state T

18/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Implementation of DPR FPGA control

Yuc$
X$

Reconfigurable-System-
-
-
-
$
$
$
$
$

Reconfigurable-
Hardware-

-
CPU-
-

Data$
in$

Data$
out$$Peripherals$(ICAP,$Ba9ery,$T°,$…)$$

sys_reset();!
processing_start();!
while(){!

!processing_control();!
!get_yuc();!
!sys_step(Yuc,X);!
!configure_hw_sw(X);!

}!
…!

Controller$
(seeDCSFig.5)$

c

calling executable code generated by BZR
call reset function to initialize sates
loop for cyclic reaction :

acquire sensor input
construct automaton input Yuc
call step function to make transition and decisions
transform automaton ouput X into calls to OS API (start, ...)

19/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Coordination of administration loops

Administration loops and their coordination ANR Ctrl-Green

transition function
objectives 1−5

state of activity of managers

 rem or rep
suspend add,

delay Incr, Decr

add, rem, rep,
Incr, Decr

o, u, fail, i, d
notif. : na, nr, e

autonomic managers for sizing, repair, consolidation
multi−tier servers system

multi-tier applications :
replicated web servers ;
load balancers
autonomic managers :
Self-sizing ; Self-repair ;
Consolidation
problems : over-reaction

reconfiguration policy

1 In a replicated tier, avoid size-up when repairing

2 avoid size-down in successor tier when repairing predecessor

3 when consolidating, avoid self-sizing or repairing

4 Wait until repairs or add finish before consolidation decreasing,
and until removals finish before increasing

20/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Modelling for coordination control [jFGCS14]

S1 S2

nl /

ml / la

 ms/ sa

cl, cs,

andcs

andcl

=False =Truess

(la, sa, s) = ctrl−mgr(ml, ms, nl)
i and not ci

IdleWaitI WaitD
d and not cd

cd / sd

i and ci /
si

d and cd /
sd

e / e /

ci / si

DI

Decr = false Decr Decr
IncrIncr

= false
= false

= false
= false

Decr= false = true Decr
Incr = true = false Incr

= false Incr

(si, sd, Incr, Decr) = consolidation (ci, cd, i, d, e)

Generic models

Self-sizing control
Self-repair control
Consolidation control

models instantiated for each AM
composition gives global behavior

reconfiguration policy

1 not (repairing and add)

2 not (repairingL and rem)

3 not (repairingpred and remsucc)

4 ... 21/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Modular coordination control [CBSE14]

Repair Sizing

CtrlrM1

Coord-rep. tier

Repair Coord-rep. tier

CtrlrM2

Coord-lb-Rep. tier

Coord-lb-Rep. tier Coord-lb-Rep. tier

CtrlrM3

Multi-tier system

Bottom-up re-use of nodes
replicated servers tier: Coord-rep. tier

coordinating one Repair and one Sizing
load-balanced tier: Coord-lb-Rep. tier

coordinating one Repair (for LB) and one of the former
application: Multi-tier system

coordinating two of the former

22/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Outline

1 Adaptive systems

2 Autonomic and reactive systems

3 BZR language

4 Discrete feedback computing

5 Conclusion
& perspectives

23/24

Adaptive systems Autonomic and reactive systems BZR language Discrete feedback computing Conclusion

Conclusions & perspectives

Results
overview on discrete control-based design of autonomic computing

tool-supported method, reactive language & discrete control
validation in domains from software components and smart
environments to hardware reconfigurable architectures.
control-based techniques offer, at the same time,

self-adaptation and predictability

Perspectives

Modeling : other aspects of computing systems (memory, ...)
Expressivity and scalability : logico-numeric
High-level languages : Domain Specific Languages (DSLs)
Adaptive discrete control : not much theory yet

24/24

	Adaptive systems
	Autonomic and reactive systems
	Autonomic computing
	Control for feedback computing
	Reactive languages, verification and control

	BZR language
	 The BZR language for tool-supported design
	 Modularity in BZR

	Discrete feedback computing
	General design method
	Reconfiguration control in DPR FPGA-based architectures
	Coordination of administration loops

	Conclusion
	& perspectives

