Discrete control-based design of adaptive and

autonomic computing systems

Xin An ! Gwenaél Delaval 2 Jean-Philippe Diguet 3
Abdoulaye Gamati¢ * Soguy Gueye 2 Hervé Marchand °
Noél de Palma 2 Eric Rutten °

1: Hefei University of Technology, Hefei, China, xin.an@hfut.edu.cn

2: LIG, Grenoble, France, gwenael.delaval@imag.fr, Soguy-Mak-Kare.Gueye@imag.fr,
noel.depalma®@imag.fr

3: Lab-STICC, Lorient, France, jean-philippe.diguet@univ-ubs.fr
4: LIRMM, Montpellier, France, abdoulaye.gamatie®@lirmm.fr

5: INRIA, Rennes, France, herve.marchand®@inria.fr

6: INRIA, Grenoble, France, eric.rutten@inria.fr,

https://team.inria.fr/ctrl-a/members/eric-rutten

January 29, 2015

Outline

@ Adaptive systems

e Autonomic and reactive systems

9 BZR language

@ Discrete feedback computing

© Conclusion

2/24

Adaptive systems

Outline

@ Adaptive systems

3/24

Adaptive systems

Adaptive computing systems

two complementary, and sometimes contradictory, requirements:

e adaptability to changes in their environment or functionality

@ dependability w.r.t. their goal and persons in contact

administration loops in computing systems

reacting to changes in: automated
@ operation environment too large or complex
@ implementation platform sometimes too fast

@ application objectives .. :
for manual administration

— Autonomic Computing : self-managed systems
automated administration in the form of a feedback loop

4/24

Adaptive systems

Control for dependability

e w.r.t. damage in system finality (information, business, ...)
e w.r.t. safety (goods, persons, ...)

specificity of autonomic systems : automated feedback loop

need for control of automated behaviors

@ they can oscillate, diverge, react too slowly, ...

@ objectives can be multiple and interfere

— design theories and techniques from Control Theory

new interaction between control and computer science

@ computer science for control systems : embedded systems

@ theoretical informatics and control theory : hybrid systems

— control theory for computing systems considered here
for well-behaved automated computer management loops

V.

5/24

Autonomic and reactive systems

Outline

© Autonomic and reactive systems
@ Autonomic computing
@ Control for feedback computing
@ Reactive languages, verification and control

6/24

Autonomic and reactive systems
.

Autonomic computing

Autonomic Computing Initiative (ACl) initiated by IBM, early 2000

networked computing systems able to manage themselves, trough
decisions made automatically, without direct human intervention

autonomic objectives autonomic loop

@ Self-configuration MAPE-K
@ Self-healing
.. . analyse=» plan
o Self-optimization 2
. monitor execute
o Self-protection 5 knowledge
sensor actuator

can interact, interferences can

require coordination TEMEGEL CIEmEL

y v

7/24

Autonomic and reactive systems
o

Control for feedback computing

for guarantees on behavior of automated closed-looped systems

control theory: framework of methods and techniques

to build automated systems with well-mastered behavior
sensors and actuators connected to given “plant” to be controlled
model of the dynamic behavior of the process,
control objective specified explicitly
— on these bases the control solution is formally derived

Control for computing systems: Feedback Computing

not usual in Computer Science, still only emerging
advantages: rigorous, supports uncertainties, stability, robustness,
difficulties: modeling and translating management objectives
to actual system-level sensors and actuators,
to appropriate, useable control models
most computing systems not designed to be controllable

8/24

Autonomic and reactive systems
[1e}

Reactive languages, synchronous programming

Modelling formalism and programming language

@ reaction to input flows — output flows
o data-flow nodes and equations ; mode automata (FSM)
@ parallel (synchronous) and hierarchical composition

synchronous languages, (25+ years)
tools: compilers (e.g., Heptagon), code generation, verification, ...

example: delayable task control (in Heptagon)
delayable (r,c,e)=a.s

a =false a =false

node delayable(r,c,e:bool) returns (a,s:bool)
let automaton
state Idle do
a = false; s =r and ¢
until r and c then Active
| r and not ¢ then Wait

state Wait do a = false; s = c

until ¢ then Active
state Active do a = true; s=false

until e then Idle
end tel

a =true

9/24

Autonomic and reactive systems
oce

Discrete controller synthesis (DCS): principle

Enforcing a temporal property ® on a system
on which ® does not yet hold a priori

10/24

Autonomic and reactive systems
oce

Discrete controller synthesis (DCS): principle

Enforcing a temporal property ® on a system
on which ® does not yet hold a priori

Principle (on implicit equational representation)

State memory

Trans transition function _ ll-l
. yI—— z
Out output function

10/24

Autonomic and reactive systems
oce

Discrete controller synthesis (DCS): principle

Enforcing a temporal property ® on a system
on which ® does not yet hold a priori

Principle (on implicit equational representation)

State memory
Trans transition function . N a5l o

Out output function

e Partition of variables : controllable (Y¢), uncontrollable (Y)

10/24

Autonomic and reactive systems
oce

Discrete controller synthesis (DCS): principle

Enforcing a temporal property ® on a system
on which ® does not yet hold a priori

Principle (on implicit equational representation)

State memory
" : [E
Trans transition function ., |—>Y ot

Out output function Y ‘

e Partition of variables : controllable (Y¢), uncontrollable (Y)

@ Computation of a controller such that the controlled system
satisfies ® by control (invariance, reachability, attractivity, ...)

DCS tool: Sigali (H. Marchand e.a.)

10/24

BZR language

Outline

e BZR language
@ The BZR language for tool-supported design

@ Modularity in BZR

11/24

BZR language
°

BZR programming language [http://bzr.inria. fr]

@ built on top of nodes in Heptagon
@ to each contract, associate controllable variables, local
@ at compile-time (user-friendly DCS),
compute a controller for each component
@ when no controllable inputs : verification by model-checking
@ step and reset functions ; executable code : C, Java, ...
node delay
(new_sig: bool; c:bool) node main
BZR program returns (out: bool) (signall, signal2: bool)
» let automaton returns (d1, d2:bool)
Hv state Idle
automaton do out=new_sig & c contract
model until new_sig & not c enforce not (d1 & d2)
monitor execute) then Waiting with (c1,c2:bool)
| new_sig & c then Idle let
managed state Waiting dl = delay(signall, cl);
system do out=c d2 = delay(signal2, c2);
until c then Idle tel
end tel

& G. Delaval & H. Marchand [ACM LCTES'10] [jDEDS13] 12/24

http://bzr.inria.fr

BZR language
0

Need for modularity

Advantages of DCS approach

(i) high-level language support

(ii) correctness of the controller,

°
e (iii) maximal permissiveness of controllers

o (iv) automated formal synthesis of these controllers
°

(v) automated executable code generation in C or Java.

Need for modularity

@ scalability: state-space exploration algorithms are exponential

@ re-usability of management components

13/24

BZR language
oce

Modularity in BZR

node(...) = ...
assume A enforce G
with cp,...cq

subnode;(...) = subnodey(...) = ...
assume A; enforce Gy |’ assume A, enforce G,

Modular contracts in Heptagon/BZR

based on the modular compilation of the nodes

@ assume not only A, but also that the n sub-nodes each do
enforce their contract: A7_;(Ai = G;).

e enforce G as well as the assumptions of sub-nodes: A7_; A;

14/24

Discrete feedback computing

Outline

@ Discrete feedback computing
@ General design method
@ Reconfiguration control in DPR FPGA-based architectures

@ Coordination of administration loops

15/24

Discrete feedback computing
.

General design method

An interpretation of the MAPE-K loop

[oietives cont s L vttt Typical modeled features
controllables observability & controllability

resources: levels, on/off,

EIRBEED tasks: activity, start, end,
! checkpoints, modes

inputs outputs . .

P—— application: task graph,

workflow |

Granularity levels, depending on decision problem

lowest : MEs : (relatively) fast, low overhead

level of AM : slower pace, sporadic ; limited by dynamics of system

level of AMs coordination : even slower, can afford
synchronizations, distributed decisions e.g. leader election

16/24

Discrete feedback computing
®00

Reconfiguration control in DPR FPGA-based architectures

Considered class of architectures ANR Famous

tiles exclusivity, on/off
reach end of DAG

bound power peak / batt. | | mode or delay

sw. on/off tile

o architecture : tiles A1 ,,
(sleep mode) ; battery
/ pr?i%ﬁiy"o?%%(iﬁgﬁgig‘?fé’l'iﬁi?{&)\ o tasks : delayable ; modes
state of tilesand battery .
tiles, power, WCET, ...
ends of tasks start task mod (p)

battery charg sw. onoff tile @ application : task graph
FPGA, tasks, application, battery .

} transition function

v

reconfiguration policy

@ resource usage : exclusive tiles A1-A4

@ cenergy : tiles active if and only if needed
@ power peak : bounded w.r.t battery level
@ reachability: application graph end

@ optimizing e.g., global power peak

17/24

Discrete feedback computing
oceo

Modelling for in DPR FPGA control [ICAC13]

T‘ ‘Application
act, = false ec/n
B E— o= ool
not c_a, e ° s/
act, = true|
™, |
_ne] o
(L}, (A3AG), down down down
cuc, | 200,180) 100,250) | es -
— - up Lt»
e N Tl s st=n P stmm P am
Generic models
tiles RM;, task graph, global model :
(two-modes) tasks, battery composition of instances
v

reconfiguration policy

Objective 1 to 3 : invariance e.g., for 3 :
PP < (vy if st = h else vo if st = m else v3 if st =)
Objective 4 : reachability of terminal state T

< 18/24

Discrete feedback computing
ocoe

Implementation of DPR FPGA control

Reconfigurable System ¢ | sys_reset();
// processing_ start();
’ while(){
L/ processing_control();
. ck get_yuc();
Reconfigurable b CPU | T sys_step(Yuc,X);
Hardware N configure hw_sw(X);
> = NE
N
Data Data Yy —sl Controller [X |
in | Peripherals (ICAP, Battery, T°, ...)| oyt (see DCS Fig.5)

calling executable code generated by BZR

o call reset function to initialize sates
@ loop for cyclic reaction :

@ acquire sensor input

e construct automaton input Yuc

o call step function to make transition and decisions

e transform automaton ouput X into calls to OS API (start, ...)

19/24

Discrete feedback computing
®00

Coordination of administration loops

Administration loops and their coordination ANR Ctrl-Green

o multi-tier applications :

objectives 1-5 }"ansi“m f“"C“D”‘ replicated web servers ;
suspend add,
t rem or rep load balancers
delay Incr, Dect]

@ autonomic managers :
Self-sizing ; Self-repair ;
Consolidation

state of activity of managers

o, u, fail, i, d add, rem, rep,
notif. : na, nr, Incr, Decr

autonomic managers for sizing, repair, consolidation
multi-tier servers system

@ problems : over-reaction

o’

reconfiguration policy

@ In a replicated tier, avoid size-up when repairing

@ avoid size-down in successor tier when repairing predecessor

@ when consolidating, avoid self-sizing or repairing

20/24

Discrete feedback computing
oceo

Modelling for coordination control [JFGCS14]

i, 5, Incr, Decr) = consolidation (i, cd, . d,e) |

Incr = false Incr = false Incr = false
Decr = false Decr = false Decr = false

(Ia, sa, s) = ctrl-mgr(cl, cs, ml, ms, nl)

cs and ms/ sa

Incr = frue
Decr = false

Generic models

Self-sizing control
Self-repair control
Consolidation control

Incr = false
Decr = frue

models instantiated for each AM
composition gives global behavior

v

reconfiguration policy

@ not (repairing and add)

@ not (repairingL and rem)

@ not (repairingpreq and remgycc)

o .. 21/24

Discrete feedback computing
oce

Modular coordination control [CBSE14]

Repair Sizing Repair Coord-rep. tier |Coord—|beep. tierl |Coord—|b7Rep. tierl

Coord-rep. tier Coord-Ib-Rep. tier Multi-tier system

Bottom-up re-use of nodes

o replicated servers tier: Coord-rep. tier
coordinating one Repair and one Sizing

o load-balanced tier: Coord-1b-Rep. tier
coordinating one Repair (for LB) and one of the former

@ application: Multi-tier system
coordinating two of the former

v

22/24

Conclusion

Outline

© Conclusion
@ & perspectives

23/24

Conclusion
°

Conclusions & perspectives

overview on discrete control-based design of autonomic computing

@ tool-supported method, reactive language & discrete control

@ validation in domains from software components and smart
environments to hardware reconfigurable architectures.

@ control-based techniques offer, at the same time,
self-adaptation and predictability

@ Modeling : other aspects of computing systems (memory, ...)

o Expressivity and scalability : logico-numeric
e High-level languages : Domain Specific Languages (DSLs)
e Adaptive discrete control : not much theory yet

24/24

	Adaptive systems
	Autonomic and reactive systems
	Autonomic computing
	Control for feedback computing
	Reactive languages, verification and control

	BZR language
	 The BZR language for tool-supported design
	 Modularity in BZR

	Discrete feedback computing
	General design method
	Reconfiguration control in DPR FPGA-based architectures
	Coordination of administration loops

	Conclusion
	& perspectives

