Feedback Autonomic Provisioning for guaranteeing
performance (and reliability)
- application to Big Data Systems

Bogdan Robu
bogdan.robu@gipsa-lab.fr

HIPEAC - HPES Workshop Amsterdam 19-21.01.2015

gipsa-lab

=
F ——

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

oty

Context of the work presented here

@ Joint work with Mihaly Berekmeri, Nicolas Marchand (Control Theory,

GIPSA-lab) and Sara Bouchenak, Damian Serrano (Computer Science,
INSA Lyon)

@ Work supported by LabEx PERSYVAL-Lab

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Why putting control theory in computer science?

| want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.

@ How it is done nowadays?

R gipsa-lab

)

§psar

.
*mﬂ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Why putting control theory in computer science?

| want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.
@ How it is done nowadays?

o feeback + using upper and lower thresholds for adding / removing resources,
machine learning (assume homogeneity)

-ﬂg gipsa-lab
3 —

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Why putting control theory in computer science?

| want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.
@ How it is done nowadays?

o feeback + using upper and lower thresholds for adding / removing resources,
machine learning (assume homogeneity)

@ But what can happen ... ?
@ instability (or very slow response)
@ continuous oscillations along the objective (jitter)
@ ... and what about adding additional delays in the output?

-ﬂg gipsa-lab
3 —

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Motivation to put control theory in computer science

@ Dealing with the dynamics: time is crucial
@ Mathematical tools to "control" a system

@ By "control", we mean being able to

o define a control objective
o define control actions accordingly
@ guarantee performances of the controlled system
@ despite errors
@ despite perturbations
@ Facing everything that is unknown
@ Guarantee stability

@ Nowadays control theory is everywhere...

spsalon @ @Utomotive, robotics, energy (grids, production, etc.), microelectronics, etc.

amy
__Q
é @ ...except maybe in computer science *%&%m

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

CHALLENGING DIFFICULTIES

@ Language difficulties
@ things with the same name do not mean same thing

R gipsa-lab

)

§psar

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

CHALLENGING DIFFICULTIES

@ Language difficulties
@ things with the same name do not mean same thing

@ No physics behind algorithms, applications, services, etc.

gipsa-lab

=
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

CHALLENGING DIFFICULTIES

@ Language difficulties
@ things with the same name do not mean same thing

@ No physics behind algorithms, applications, services, etc.

@ Building models is critical and unusual
@ How do i put the system in the control theory normal form dx =flxu)?
@ Control, outputs, sensors, etc. can disappear with asystem update
@ Evolution of a system can be discontinuous (robustness issue)
@ No "tiredness", only crashes

@ Model must capture main behavior BUT
@ if too precise = too complex
@ if too complex I’# inefficient for control (not robust)
@ Model for control is not classical modeling

@ Requires much more interaction than usual sciences!

losanh

.
*mﬂ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Outline

Structure of the presentation

Outline of the talk :
° Appligatign of control to Big Data Clouds ’\ ’E %
> motivation
@ Modeling the Big Data MR system
@ Controlling the MR system

@ Conclusions and perspectives

gipsa-lab

=
3 e

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Generalities

Big Data - Big Science

Big Data : very big amount of unstructured data !

@ "90% of world’s data generated over last two years" (Science Daily, May
22,2013)

@ "The volume of business data worldwide, across all companies, doubles
every 1.2 years" (eMarketer. October 2013)

gipsa-lab

=
s L

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Generalities

(One)Answer : MapReduce

Developed by Google in 2008, it provides a parallel processing model and
associated implementation to process huge amount of data.

@ Advantages of MapReduce:

@ Hides many of the complexities of parallelism
@ Usage simplicity, scalablity and fault-tolerance

@ Challenges of MapReduce:

o Difficult to provision when faced with a changing workload
@ Complex architecture, node homogeneity problems, many points of
contention: CPU, 10, network skews, failures,

k]

R
indlalizd

f(psaap

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Modeling Before the modeling phase

System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?

-ﬂg gipsa-lab
3 —

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Modeling Before the modeling phase

System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?

How do | translate this behavior into some kind of equation?

-ﬂg gipsa-lab
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Modeling Before the modeling phase

System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?
How do | translate this behavior into some kind of equation?

Difficulties with (modeling) MapReduce (MR) :

@ the performance of MR systems varies from one version to another :-(;
@ existing models predict only the steady state response of MRjobs
(That's already something !) and do not capture system dynamics :-(;

@ existing models assume that every job is running in a isolated virtual
_ Cluster.

R
R HURER

th)gs

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Modeling Before the modeling phase

System behavior

From where to start?

The model needs to be implementation agnostic!

1. Choosing the control inputs:
@ number of nodes.

2. What about other things that i can not influence?
@ number of clients (disturbance).
3. Choosing the outputs

@ response time (the time it takes for a client interaction to execute).

-ﬂg gipsa-lab
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Modeling Before the modeling phase

System behavior

And this brings us to something like this ...

Perturbation(s)

Input(s) Qutput
—f MapReduce System ﬂ,(s)

gipsa-lab

=
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Modeling Before the modeling phase

System behavior

or if we zoom out ... the experimental setup

Local Sensor ssn s RemoEte =
Bash Scripts Tunnels ensor Bas|
Scripts,

Response Time
Number of clients

MRBS
workload
generator

Pl + Feed-forward
controller in Matlab

Local
0005PH9

Client Interactions

Number of nodes

Hadoop
MapReduce
Local ssH Remote [
Actuator Tunnels’ Actuator
Bash Scripts [Bash Scripts

After the inputs and outputs let’s find the input-output relation (model)

gipsa-lab

=
é

e

Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Bogdan Robu bogdan.robu@gipsa-lab.fr

Modeling Before the modeling phase

System behavior

Observing system behavior while nodes are increasing

- humber of clients is kept constant = 10.

Linearityexperiment fo increasing number o nodes.

1500~
g
@ 1000k
EIUW
H ———
3 s T
|3 —
& — e
| I i 1 SR T =
0 10 20 30 40 50 80 0 80
Time (min)
T T
L o 4
H
H
S .~
=2 RV PP PP, D it Hl bt Sk ialid
i e
S 4 o 4
H -
[PR

#Nodes

gipsa-lab

=
L Ll
Time (min)
>

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Modeling Before the modeling phase

System behavior

Observing system behavior while clients are
increasing

- humber of nodes is kept constant = 20.

Linearity experiment for increasing number of clients.

5 8
]

Service time (s)
3

T
FR]
2
£ 4
3 ot B it CUPPIL N
£ PRI
s =T 4
I
0 %
4 gipsa-lab g]
= 2
b L PH FOURIER
0 % Lo moasen

Time (min)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Modeling Before the modeling phase

System behavior

... and during time

Bursty increase in the number of clients (see 10 month log production of
Yahoo's supercomputing cluster)

Open loop experiment. 100% more clients are added.

Service time (y)

o . Control reference (y)
> 250 v 4
2 SLO threshold

#Clients

gipsa-lab o 5 10 15 20 25 30
Time (min)

=
é

Bogdan Robu bogdan.robu(edback Autonomic Provisioning for ranteeing performance (and reliabilit;

Modeling Before the modeling phase

System behavior

Proposed model structure

#Clients
d(k)

Clients Model |

Zc
#Nodes Nodes Model . Service Tir?ls
u + L v
X)
N N\

ZpMR MapReduce model

y(k) = Zc(2)d(k) + Zn(2) u(k)

e 2ot = 2= L

=
i y Lot

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Controlling the system

Control architecture

Two versions of control:

1 Relaxed performance Control with Minimal Resources

2 Strict performance Control

gipsa-lab

=
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Control architecture
Relaxed performance

Strict performance

Controlling the system Can we do better 2

Relaxed performance Control with Minimal Resources

urp(k) = usp(k—1) + (Kp + Ky)e(k) - Kpe(k—1)

where K, =0.0012372 and K; = 0.25584.

#iclients
d(k)

Reference

service time #nodes Service time

vl 4 elk) Uy (k) u(k) vk

Zpi IvR
Pl controller MapReduce System

y(k)

R gipsa-lab

)

§psar

.
*mﬂ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit)

Control architecture
Relaxed performance

Strict performance

Controlling the system Can we do better 2

Relaxed performance - Control with Minimal
Resources

PI feedback control. 100% more clients are added.

Service time (y)

Control reference (v,) 4
SLO threshold

Service time (s
N
o
o

100
o 5 10 15 20 25 30
- - - - 60
450
L 200 s e s e im s mm i — 1 7]
= | {40 &
35 1 30 2
[T) SR —— E=
420
. o 10
R gipsa-lab o 5 10 15 20 25 30
3 Time (min)
)

Bogdan Robu bogdal

Control architecture
Relaxed performance

Strict performance
Can we do better ?

Controlling the system

Strict performance Control

Take advantage of the fact that we can measure online the number of clients

—35.9698(2—0.919)

Zrr(z)=2z
11(@ (z-0.7915) Feed-forward controller #clients
d(k)
’F
‘ Uff(k)
Reference
service time #nodes Service time
vk elk) upk) e k) y(k)
Zpy () IvR
Pl controller MapReduce System
, y(k)
-ﬂggtpsa lab

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Control architecture
Relaxed performance

Controlling the system SHEFEITETED
9 4 Can we do better ?

Strict performance - Feedforward Control

Pl feedback + feedforward control. 100% more clients are added.
350 T T T T T
= ervice time (v)
L 300 Control reference (y, 1
2 SLO threshold

@ 20} -
£ 20 i é
2 l 2
f 1of- = mimmmmmm - **
o
o 5 10

Time (min)

gipsa-lab

j UNIVERSITE
JOSEPH FOURIER

=
é

ranteeing performance (and rel

bogdan.robu

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Controlling the system

Can we do bhetter ?

Minimizing the number of quick changes in the control signal !

@ adding and removing of resources takes considerable time and has
energetic and monetary cost !

Solution given by : Event-based control

@ A new control value is calculated only if the difference between the
current error and last error value for which control was calculated is
greater than this threshold e;;,,

UNIVERSITE
*mﬂ{mm

losanh

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Controlling the system

Control conclusions

Control is depending on the problem !

gipsa-lab

=
é

n Robu bogdan.robi ipsa-lab.fr edback Autonomic Provisioning for anteeing performance (and reliabilit;

Conclusion and Future work

Conclusions and Future work

@ design, implementation and evaluation of an algorithm for creating
dynamic performance models for Big Data MapReduce systems.

@ control: relaxed-minimal resource and strict performance constraints
while minimizing resource usage.

Many ideas for future work in : optimization, predictive, adaptive control ...

-ﬂg gipsa-lab
3 ;%ﬁ{mm

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliabilit

Conclusion and Future work

Thank you !

gipsa-lab

=
4 [
> -

n Robu bogdan.robi ipsa-lab.fr edback Autonomic Provisioning for anteeing performance (and reliabilit)

	Outline
	Generalities
	Modeling
	Before the modeling phase
	System behavior
	Model structure

	Controlling the system
	Control architecture
	Relaxed performance
	Strict performance
	Can we do better ?

	Conclusion and Future work

