
Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Feedback Autonomic Provisioning for guaranteeing
performance (and reliability)

- application to Big Data Systems

Bogdan Robu
bogdan.robu@gipsa-lab.fr

HIPEAC - HPES Workshop Amsterdam 19-21.01.2015

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Context of the work presented here

Joint work with Mihaly Berekmeri, Nicolas Marchand (Control Theory,
GIPSA-lab) and Sara Bouchenak, Damian Serrano (Computer Science,
INSA Lyon)

Work supported by LabEx PERSYVAL-Lab

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Why putting control theory in computer science?

I want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.

How it is done nowadays?
feeback + using upper and lower thresholds for adding / removing resources,
machine learning (assume homogeneity)

But what can happen ... ?
instability (or very slow response)
continuous oscillations along the objective (jitter)
... and what about adding additional delays in the output?

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Why putting control theory in computer science?

I want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.

How it is done nowadays?
feeback + using upper and lower thresholds for adding / removing resources,
machine learning (assume homogeneity)

But what can happen ... ?
instability (or very slow response)
continuous oscillations along the objective (jitter)
... and what about adding additional delays in the output?

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Why putting control theory in computer science?

I want my system to be autonomous, i want him to recover if something goes
wrong, i want him to be robust ... while minimizing some resource usage.

How it is done nowadays?
feeback + using upper and lower thresholds for adding / removing resources,
machine learning (assume homogeneity)

But what can happen ... ?
instability (or very slow response)
continuous oscillations along the objective (jitter)
... and what about adding additional delays in the output?

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Motivation to put control theory in computer science

Dealing with the dynamics: time is crucial

Mathematical tools to "control" a system

By "control", we mean being able to
define a control objective
define control actions accordingly
guarantee performances of the controlled system

despite errors
despite perturbations
Facing everything that is unknown
Guarantee stability

Nowadays control theory is everywhere...
automotive, robotics, energy (grids, production, etc.), microelectronics, etc.

...except maybe in computer science

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

CHALLENGING DIFFICULTIES

Language difficulties
things with the same name do not mean same thing

No physics behind algorithms, applications, services, etc.

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

CHALLENGING DIFFICULTIES

Language difficulties
things with the same name do not mean same thing

No physics behind algorithms, applications, services, etc.

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

CHALLENGING DIFFICULTIES

Language difficulties
things with the same name do not mean same thing

No physics behind algorithms, applications, services, etc.
Building models is critical and unusual

How do i put the system in the control theory normal form d x
d t

= f (x,u) ?
Control, outputs, sensors, etc. can disappear with a system update
Evolution of a system can be discontinuous (robustness issue)
No "tiredness", only crashes

Model must capture main behavior BUT
if too preciseR too complex
if too complexR inefficient for control (not robust)
Model for control is not classical modeling

Requires much more interaction than usual sciences !

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Structure of the presentation

Outline of the talk :

Application of control to Big Data Clouds
: motivation

Modeling the Big Data MR system

Controlling the MR system

Conclusions and perspectives

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Big Data - Big Science

Big Data : very big amount of unstructured data !

"90% of world’s data generated over last two years" (Science Daily, May
22, 2013)

"The volume of business data worldwide, across all companies, doubles
every 1.2 years" (eMarketer. October 2013)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

(One)Answer : MapReduce

Developed by Google in 2008, it provides a parallel processing model and
associated implementation to process huge amount of data.

Advantages of MapReduce:

Hides many of the complexities of parallelism
Usage simplicity, scalablity and fault-tolerance

Challenges of MapReduce:

Difficult to provision when faced with a changing workload
Complex architecture, node homogeneity problems, many points of
contention: CPU, IO, network skews, failures,

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?

How do I translate this behavior into some kind of equation?

Difficulties with (modeling) MapReduce (MR) :

the performance of MR systems varies from one version to another :-(;

existing models predict only the steady state response of MRjobs
(That’s already something !) and do not capture system dynamics :-(;

existing models assume that every job is running in a isolated virtual
cluster.

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?

How do I translate this behavior into some kind of equation?

Difficulties with (modeling) MapReduce (MR) :

the performance of MR systems varies from one version to another :-(;

existing models predict only the steady state response of MRjobs
(That’s already something !) and do not capture system dynamics :-(;

existing models assume that every job is running in a isolated virtual
cluster.

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Modeling

How to have an idea about the I/O behavior of MapReduce?

How do I translate this behavior into some kind of equation?

Difficulties with (modeling) MapReduce (MR) :

the performance of MR systems varies from one version to another :-(;

existing models predict only the steady state response of MRjobs
(That’s already something !) and do not capture system dynamics :-(;

existing models assume that every job is running in a isolated virtual
cluster.

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

From where to start?

The model needs to be implementation agnostic!

1. Choosing the control inputs:

number of nodes.

2. What about other things that i can not influence?

number of clients (disturbance).

3. Choosing the outputs

response time (the time it takes for a client interaction to execute).

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

And this brings us to something like this ...

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

or if we zoom out ... the experimental setup

After the inputs and outputs let’s find the input-output relation (model)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Observing system behavior while nodes are increasing

- number of clients is kept constant = 10.

0 10 20 30 40 50 60 70 80
0

500

1000

1500
Linearity experiment for increasing number of nodes.

S
e
rv

ic
e
 t

im
e
 (

s
)

Time (min)

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t

Time (min)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

#
N

o
d

e
s

Time (min)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Observing system behavior while clients are
increasing

- number of nodes is kept constant = 20.

0 10 20 30 40 50 60 70 80
0

200

400

600
Linearity experiment for increasing number of clients.

S
e
rv

ic
e
 t

im
e
 (

s
)

Time (min)

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t

Time (min)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

#
C

li
e
n

ts

Time (min)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

... and during time

Bursty increase in the number of clients (see 10 month log production of
Yahoo’s supercomputing cluster)

0 5 10 15 20 25 30
100

150

200

250

300

Se
rv

ic
e

tim
e

(s
)

Open loop experiment. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
5

10

15

20

25

30

#C
lie

nt
s

Time (min)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Before the modeling phase
System behavior

Proposed model structure

ZN

ZC

+
+

u(k) y(k)

d(k)

ZMR

Nodes Model

Clients Model

MapReduce model

Service Time

#Clients

#Nodes

y(k) = ZC (z)d(k)+ZN (z)u(k)

ZC (z) = z−8 1.0716(z+1)
z−0.7915

ZN (z) = z−5 −0.17951(z+1)
z−0.919

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Control architecture

Two versions of control:

1 Relaxed performance Control with Minimal Resources

2 Strict performance Control

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Relaxed performance Control with Minimal Resources

u f b(k) = u f b(k −1)+ (Kp +Ki)e(k)−Kp e(k −1)

where Kp = 0.0012372 and Ki = 0.25584.

ZMR

yr(k) ufb(k) u(k)e(k)

d(k)

y(k)+

PI controller MapReduce System

Service time#nodes

#clients

y(k)

Reference
service time

Z
PI

-

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Relaxed performance - Control with Minimal
Resources

0 5 10 15 20 25 30
100

150

200

250

300

350

Se
rv

ic
e

tim
e

(s
)

PI feedback control. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
0

10

20

30

#C
lie

nt
s

Time (min)

#Clients (d)

10

20

30

40

50

60

#N
od

es

#Nodes (u)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Strict performance Control

Take advantage of the fact that we can measure online the number of clients

Z f f (z) = z−3 5.9698(z−0.919)

(z−0.7915)

ZMR

yr(k) ufb(k)

uff(k)

u(k)e(k)

d(k)

y(k)+ + -

Z
FF

PI controller

Feed-forward controller

MapReduce System

Service time#nodes

#clients

y(k)

Reference
service time

Z
PI

-

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Strict performance - Feedforward Control

0 5 10 15 20 25 30
100

150

200

250

300

350

Se
rv

ic
e

tim
e

(s
)

PI feedback + feedforward control. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
0

10

20

30

#C
lie

nt
s

Time (min)

#Clients (d)

10

20

30

40

50

60

#N
od

es

#Nodes (u)

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Can we do better ?

Minimizing the number of quick changes in the control signal !

adding and removing of resources takes considerable time and has
energetic and monetary cost !

Solution given by : Event-based control

A new control value is calculated only if the difference between the
current error and last error value for which control was calculated is
greater than this threshold el im

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Control architecture
Relaxed performance
Strict performance
Can we do better ?

Control conclusions

Control is depending on the problem !

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Conclusions and Future work

design, implementation and evaluation of an algorithm for creating
dynamic performance models for Big Data MapReduce systems.

control: relaxed-minimal resource and strict performance constraints
while minimizing resource usage.

Many ideas for future work in : optimization, predictive, adaptive control ...

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

Outline
Generalities

Modeling
Controlling the system

Conclusion and Future work

Thank you !

Bogdan Robu bogdan.robu@gipsa-lab.fr Feedback Autonomic Provisioning for guaranteeing performance (and reliability)

	Outline
	Generalities
	Modeling
	Before the modeling phase
	System behavior
	Model structure

	Controlling the system
	Control architecture
	Relaxed performance
	Strict performance
	Can we do better ?

	Conclusion and Future work

