

Control activities for SOC (LIALP)

S. Lesecq

D. Puschini, L. Vincent, Y. Akgul

En partenariat avec E. Beigné (LISAN) Ph Maurine (LIRMM)

Ceatech Control in context: definitions

ceatech Control for MPSoC: genesis

Ceatech

Ceatech Control for MPSoC

PW consumption management Thermal-aware Voltage/frequenc island power controlle Speed sen Tmax = 45 °C Classical control of the energy-perfo average speed s Computation speeds [x10⁷ IPS] **DVFS** i - -----[S. Durand, doctorat [°C] INPG, 2011] Noltage 1.1 Г Time [x10⁻⁶ s]

Collaboration CRI-INRIA (NeCS team)
DVFS under thermal constraints

Several VFI \rightarrow towards distributed control

Leti & List

Ceatech Control for MPSoC

- PW consumption management
 - Joint V/F control

18/10/13 – réunion HPES 5

3ème actuator (Vth) ??

ceatech Outline

Ceatech

Temperature and Fast Voltage On-Chip Monitoring using Low-Cost Digital Sensors

Travaux de Lionel Vincent

Ceatech

Adaptive architecture

⇒ AVFS : Adaptive Voltage and Frequency Scaling : Adaptive architecture to mitigate local but also dynamic PVT variations

Ceatech

Sensor for variability monitoring

Data fusion based on KS test in IC

 Comparison between Measurements and Models using Kolmogorov-Smirnov test

Ideal calibration phase

Ceatech

Running-time phase

Leti & List

Ceatech

Results: method validation

Ceatech Performances on hardware platform

Ceatech Need for a Fast Voltage monitoring

ceatech

Fast Voltage monitoring method

- ⇒ Principle : Take advantage of the dynamics disparities
 - ⇒ Hypothesis : The temperature is constant during the measurement
 - \Rightarrow On SThorm : $t_m \approx 0.66 \mu s \ll t_{T^\circ}$ time constant (>10 \mu s)

\Rightarrow Influence of the chosen RO :

x 10 ⁹	Frequency of RO#1				
3.5					
3-		· · · · ·			
2.5 F_{RO}					
ш 1.5-					
1-					
0.5					
	Ŷ				
50 (0.8 1	1.2			
T (°C)	V (V)				

RO	Inverter	LowTherm	LongWire	Latches	Xor	Ncap	Pcap
$\mu_{\epsilon_V} (mV)$	3.24	2.31	2.84	2.56	2.90	3.43	3.80
$\sigma_{\epsilon_V} (mV)$	3.94	4.94	3.56	3.30	3.64	4.14	4.60

Ceatech Performances on hardware platform

Ceatech

Summary

- A complete framework to monitor Voltage and Temperature variations on wide range of dynamics
 - Low-cost digital and general purpose sensor
 - VT estimation methods
 - VT conjoint data fusion method: Use of goodness-of-fit hypothesis tests
 - Fast voltage monitoring method
 - Calibration method
- Validated on SThorm hardware platform
- A complete framework to monitor Voltage and Temperature