RNA isoforms discovery from RNA-seq data FlipFlop: Fast Lasso based Isoform Prediction as a FLOw Problem

Elsa Bernard¹, Laurent Jacob², Julien Mairal³, Jean-Philippe Vert¹

¹Mines ParisTech, Institut Curie, INSERM U900 ²CNRS - LBBE Laboratory, Lyon ³Inria - LEAR, Grenoble

Persyvact workshop on probabilistic graphical models - July 2014

Team Players

- E. Bernard, L. Jacob, J. Mairal, and J-P. Vert. Efficient RNA Isoform Identification and Quantification from RNA-Seq Data with Network Flows Bioinformatics. 2014.
- (J. Mairal and B. Yu. Supervised Feature Selection in Graphs with Path Coding Penalties. Journal of Machine Learning Research. 2013).

There will be a probabilistic model and a graph

¥

Bayesian graphical model or

Markov Random Field

DNA Transcription/Translation (Central Dogma, 1958)

Modern Biology and Challenges

DOE Joint Genome institute

- biology is producing massive amount of data;
- sequencing one genome now costs about 1000\$ (vs 0.1 billion \$ in 2001), and produces about a few gigabytes of data;
- prediction from DNA data.

Alternative Splicing: 1 Gene = Many Proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

Importance of Alternative Splicing

Opportunities for Drug Developments...

(*Pal et al., 2012*)

- 4 同 2 4 日 2 4 日 2 4

RNA-Seq or Next-Generation Sequencing

What is RNA-Seq?

• RNA-Seq measures abundance of RNA;

Goegle	"RNA-seq"							Ŷ	۹
	Web	Images	Vidéos	Actualités	Livres	Plus 🔻	Outils de recherche		
	Environ	Environ 1 600 000 résultats (0,36 secondes)							
	RNA en.wikip RNA-se ("WTSS Introduc	-Seq - W bedia.org/wiki eq (RNA Seq (RNA Seq (The seq)(The seq)(Th	ikipedia, f /RNA-Seq uencing), also blogy that use s - Analysis -	the free en Traduire cette called "Whole so the capabilitie Application to C	cycloped page Franscripton s of next-gen enomic Med	ia ne Shotgun S neration dicine	Sequencing"		

The Isoform Identification and Quantification Problem

Given a biological sample can we:

- Identify the isoform(s) of each gene present in the sample?
- Quantify their abundance?

From RNA-Seq Reads to Isoforms

De Novo methods

Genome-Based Methods

Genome-Based Isoforms Reconstruction

Place in the literature

Image: Image:

- ∢ ⊒ →

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem

flow method

- adapted to LONG READS
- R package

- NO NEED for FILTERING of candidate isoforms

- FASTER than existing methods that solve the same problem

- adapted to LONG READS

- R package

particular splicing graph

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem
- adapted to long reads
- R package

Home Install Help

イロト イポト イヨト イヨト

Home » Bioconductor 2.13 » Software Packages » flipflop

flipflop

Fast lasso-based isoform prediction as a flow problem

Bioconductor version: Release (2.13)

Flipflop discovers which isoforms of a gene are expressed in a given sample together with their abundances, based on RNA-Seq read data.

Author: Elsa Bernard, Laurent Jacob, Julien Mairal and Jean-Philippe Vert

Maintainer: Elsa Bernard <elsa.bernard at mines-paristech.fr>

To install this package, start R and enter:

source("http://bioconductor.org/biocLite.R")
biocLite("flipflop")

Outline

1 Formulation as a Path Selection Problem

Sparse Probabilistic Model and Optimization: FlipFlop

3 Results and Perspectives

Isoforms are Paths in a Graph

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: 1 type of read \leftrightarrow 1 node

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: one path with abundance β_1

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: another path with abundance β_2 ...

Select a Small Number of Paths?

n exons $\rightarrow \sim 2^n$ paths/candidate isoforms

feature selection problem with \sim 1000 candidates for 10 exons and \sim 1000000 for 20 exons

Minimal path cover

Cufflinks

Regularization approach

 IsoLasso, NSMAP, SLIDE, iReckon, MiTie, FlipFlop

Select a Small Number of Paths?

Cufflinks strategy

A two-step approach

- find a set of *minimal paths* to explain read positions (independent from read counts)
- estimate isoform abundances using read counts

Select a small number of paths?

Regularization approach

- Suppose there are c candidate isoforms (c large)
- **2** Let β the unknown c-dimensional vector of abundance

Select a small number of paths?

Regularization approach

- Suppose there are c candidate isoforms (c large)
- **2** Let β the unknown c-dimensional vector of abundance
- **(3)** Let $\mathcal{L}(\beta)$ quantify whether β explains the observed read counts
 - e.g., Poisson negative log-likelihood:

$$\mathcal{L}(\boldsymbol{\beta}) = \sum_{\text{node } u} -\log p(X_u) \text{ with } X_u \sim \mathcal{P}(\delta_u) \text{ and } \delta_u \propto l_u \sum_{\text{path } p \ni u} \boldsymbol{\beta}_p$$

Select a small number of paths?

Regularization approach

- Suppose there are c candidate isoforms (c large)
- **2** Let β the unknown c-dimensional vector of abundance
- **(3)** Let $\mathcal{L}(\beta)$ quantify whether β explains the observed read counts
 - e.g., Poisson negative log-likelihood:

$$\mathcal{L}(\boldsymbol{\beta}) = \sum_{\text{node } u} -\log p(X_u) \text{ with } X_u \sim \mathcal{P}(\delta_u) \text{ and } \delta_u \propto l_u \sum_{\text{path } p \ni u} \boldsymbol{\beta}_p$$

Regularization-based approaches try to solve:

 $\min_{oldsymbol{eta}\in\mathbb{R}^{\mathsf{c}}_+}\mathcal{L}(oldsymbol{eta})$ such that $oldsymbol{eta}$ is sparse

Isoform Deconvolution with the ℓ_1 -norm

 ℓ_1 -regularization

Estimate β sparse by solving:

 $\min_{\boldsymbol{\beta} \in \mathbb{R}_+^c} \mathcal{L}(\boldsymbol{\beta}) + \lambda \| \boldsymbol{\beta} \|_1 \;,$

with $\ensuremath{\mathcal{L}}$ a convex loss function.

Computationally challenging:

- \rightarrow IsoLasso: strong filtering
- \rightarrow NSMAP, SLIDE: number of exons cut-off

FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw Problem

- \rightarrow no filtering
- \rightarrow no exons restrictions

Regularizing with the ℓ_1 -norm

The projection onto a convex set is "biased" towards singularities.
Regularizing with the ℓ_2 -norm

Regularizing with the $\ell_\infty\text{-norm}$

In 3D. Copyright G. Obozinski

<ロ> <同> <同> < 同> < 同>

æ

Fast Isoform Deconvolution with the lasso

Theoretical (practical) result

The isoform deconvolution problem

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{c}_{+}}\mathcal{L}(\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1},$$

can be solved in polynomial time with the number of nodes of the splicing graph.

Ideas:

- the sum of isoform abundances correspond to a flow on the graph
- eformulation as a convex cost flow problem (Mairal and Yu, 2012)
- I recover isoforms by flow decomposition algorithm

Combinations of isoforms are flows

Flux Capacitor. 2008. A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq. RECOMB-2013.

Equivalent flow problem (simpler!)

• For each edge sum abundances of isoforms that include the edge :

$$f_{uv} = \sum_{\text{path } p
ightarrow (u,v)} eta_p \quad \text{is a flow}$$

Moreover

$$\|\boldsymbol{\beta}\|_1 = \sum_{\text{path } p} \boldsymbol{\beta}_p = f_t$$

Therefore

 $\min_{\beta \in \mathbb{R}_+^c} \mathcal{L}(\beta) + \lambda \|\beta\|_1 \text{ is equivalent to } \min_{\substack{f \text{ flow}}} \tilde{\mathcal{L}}(f) + \lambda f_t$

Technical details

Poisson Loss (with binary matrix **U**):

$$\mathcal{L}(\mathbf{U}^{\mathsf{T}}\boldsymbol{\beta}) = \sum_{u \in V} \left[NI_u(\mathbf{U}^{\mathsf{T}}\boldsymbol{\beta})_u - \mathbf{y}_u \log(NI_u(\mathbf{U}^{\mathsf{T}}\boldsymbol{\beta})_u) \right]$$

Flow Decomposition:

$$f_{uv} = \sum_{p \in \mathcal{P}'} \beta_p \mathbf{1}_{\{(u,v) \in p\}}$$
$$\Rightarrow f_v = \sum_{u \in V'} f_{uv} = (\mathbf{U}^T \beta)_v$$

Convex Cost Flow:

$$\min_{f \text{flow}} \sum_{u \in V} [Nl_u f_u - \mathbf{y}_u \log(f_u)] + \lambda f_t$$

Solved using ε -relaxation method (Bertsekas 1998).

ъ

Summary

Isoform Detection=Path Selection Problem

 $\sim 2^n$ variables (all paths in the splicing graph)

Equivalent Network Flow Problem

 $\sim rac{n^2}{2}$ variables (all exons and exon-exon junctions in the splicing graph)

⊅

Ļ

Network Flow Algorithms

Efficient Algorithms ! Polynomial Time.

Performance increases with read length

Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Performance increases with coverage

Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Extension to paired-end reads OK

Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Speed Trial

Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

J. Mairal

æ

글 > - < 글 >

GC bias - Precision-Recall curve

Human Simulation: hg19, chr1, 150bp single-end reads, 2 million, 4140 transcripts.

FluxSimulator, Griebel et al, 2012.

Model selection: set of solutions minimizing $\mathcal{L}(\beta) + \lambda \|\beta\|_1$ for different values of $\lambda \to \text{BIC}$ criteria

- 4 同 6 4 日 6 4 日 6

Real Data OK

Human: 50 million 75bp paired-end reads.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion/Discussion

$\mathsf{FlipFlop} \to \mathsf{transcripts}$ reconstruction over an exponential number of candidates in polynomial time

- In the second second
- **Omega Solution:** Cross Validation, Stability Selection?
- Multiple-samples: on-going work with promising preliminary results.
- **O Differential Expression** testing at the isoform level ?

Conclusion/Discussion: get FlipFlop for free!

References

- http://cbio.ensmp.fr/flipflop/
- SParse Modelling Software SPAMS http://lear.inrialpes.fr/people/mairal/software.php
- H. Jiang and W. H. Wong. *Bioinformatics*, 25(8):1026–1032, 2009.
- C. Trapnell et al. Nat Biotechnol, 28(5):511-515, 2010.
- Z. Xia et al. BMC Bioinformatics, 12:162, 2011.
- W. Li et al. J Comput Biol, 18:1693–1707, 2011.
- J.J. Li et al. P Natl Acad Sci USA, 108(50):19867-19872, 2011.
- R. K. Ahuja et al. Prentice Hall, 1993.
- D. P. Bertsekas. Athena Scientific, 1998.
- J. Mairal and B. Yu. JMLR, 2013.

Precision-Recall curves on real data

注入 注

Speed comparison on real data

Stability study

-≣->

< 1 →

Human Simulation: Abundances

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

J. Mairal

Simulation: Deviation

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

Part IV: Back to Structured Sparsity (depending on time)

What about more complicated norms? Copyright G. Obozinski

What about more complicated norms? Copyright G. Obozinski

Group Lasso

[Turlach et al., 2005, Yuan and Lin, 2006]

the
$$\ell_1/\ell_q$$
-norm : $\Omega(\beta) = \sum_{g \in \mathcal{G}} \|\beta_g\|_q$.

- \mathcal{G} is a partition of $\{1, \ldots, p\}$;
- q = 2 or $q = \infty$ in practice;
- can be interpreted as the ℓ_1 -norm of $[\|\beta_g\|_q]_{g\in\mathcal{G}}$.

Structured sparsity with overlapping groups

Warning: Under the name "structured sparsity" appear in fact significantly different formulations!

1 non-convex

- zero-tree wavelets [Shapiro, 1993];
- predefined collection of sparsity patterns: [Baraniuk et al., 2010];
- select a union of groups: [Huang et al., 2009];
- structure via Markov Random Fields: [Cehver et al., 2008];
- convex (norms)
 - tree-structure: [Zhao et al., 2009];
 - select a union of groups: [Jacob et al., 2009];
 - zero-pattern is a union of groups: [Jenatton et al., 2009];
 - other norms: [Micchelli et al., 2010].

Group Lasso with overlapping groups [Jenatton, Audibert, and Bach, 2009]

$$\Omega(\boldsymbol{eta}) = \sum_{g \in \mathcal{G}} \|\boldsymbol{eta}_g\|_q.$$

What happens when the groups overlap?

- the pattern of non-zero variables is an intersection of groups;
- the zero pattern is a union of groups.

Hierarchical Norms

[Zhao, Rocha, and Yu, 2009]

A node can be active only if its **ancestors are active**. The selected patterns are **rooted subtrees**. Modelling Patterns as Unions of Groups the non-convex penalty of Huang, Zhang, and Metaxas [2009]

Warning: different point of view than the two previous slides

$$arphi(oldsymbol{eta}) \stackrel{\scriptscriptstyle riangle}{=} \min_{\mathcal{J} \subseteq \mathcal{G}} \Big\{ \sum_{oldsymbol{g} \in \mathcal{J}} \eta_{oldsymbol{g}} \,\, ext{s.t. Supp}(oldsymbol{eta}) \subseteq igcup_{oldsymbol{g} \in \mathcal{J}} oldsymbol{g} \Big\}.$$

- the penalty is **non-convex**.
- is NP-hard to compute (set cover problem).
- The pattern of non-zeroes in β is a union of (a few) groups.

It can be rewritten as a boolean linear program:

$$\varphi(\boldsymbol{\beta}) = \min_{\mathbf{x} \in \{0,1\}^{|\mathcal{G}|}} \left\{ \boldsymbol{\eta}^{\top} \mathbf{x} \text{ s.t. } \mathbf{N} \mathbf{x} \geq \mathsf{Supp}(\boldsymbol{\beta}) \right\}.$$

Modelling Patterns as Unions of Groups convex relaxation and the penalty of Jacob, Obozinski, and Vert [2009]

The penalty of Huang et al. [2009]:

$$\varphi(\boldsymbol{\beta}) = \min_{\mathbf{x} \in \{0,1\}^{|\mathcal{G}|}} \left\{ \boldsymbol{\eta}^{\top} \mathbf{x} \text{ s.t. } \mathbf{N} \mathbf{x} \geq \mathsf{Supp}(\boldsymbol{\beta}) \right\}.$$

A convex LP-relaxation:

$$\psi(\boldsymbol{\beta}) \stackrel{\scriptscriptstyle \Delta}{=} \min_{\mathbf{x} \in \mathbb{R}^{|\mathcal{G}|}_+} \left\{ \boldsymbol{\eta}^\top \mathbf{x} \; \text{ s.t. } \; \mathbf{N} \mathbf{x} \geq |\boldsymbol{\beta}| \right\}.$$

Lemma: ψ is the penalty of Jacob et al. [2009] with the ℓ_{∞} -norm:

$$\psi(\boldsymbol{\beta}) = \min_{(\boldsymbol{\xi}^{g} \in \mathbb{R}^{p})_{g \in \mathcal{G}}} \sum_{g \in \mathcal{G}} \eta_{g} \| \boldsymbol{\xi}^{g} \|_{\infty} \text{ s.t. } \boldsymbol{\beta} = \sum_{g \in \mathcal{G}} \boldsymbol{\xi}^{g} \text{ and } \forall g, \text{ Supp}(\boldsymbol{\xi}^{g}) \subseteq g,$$

Modelling Patterns as Unions of Groups The norm of Jacob et al. [2009] in 3D

Graph sparsity G = (V, E), with $V = \{1, \dots, p\}$

æ

回 とう キャン・キャン

Graph sparsity

Encouraging patterns with a small number of connected components

Formulation

 Ω should encourage connected patterns in the graph.

• the penalty of Huang et al. [2009]:

$$\varphi(\boldsymbol{\beta}) = \min_{\mathbf{x} \in \{0,1\}^{|\mathcal{G}|}} \left\{ \boldsymbol{\eta}^\top \mathbf{x} \;\; \text{s.t.} \;\; \mathbf{N} \mathbf{x} \geq \mathsf{Supp}(\boldsymbol{\beta}) \right\}.$$

• a convex LP-relaxation (penalty of Jacob et al. [2009]):

$$\psi(\boldsymbol{\beta}) \stackrel{\scriptscriptstyle \Delta}{=} \min_{\mathbf{x} \in \mathbb{R}^{|\boldsymbol{\beta}|}_{+}} \left\{ \boldsymbol{\eta}^{\top} \mathbf{x} \; \text{ s.t. } \; \mathbf{N} \mathbf{x} \geq |\boldsymbol{\beta}| \right\}.$$

Structured sparsity for graphs

Group structure for graphs.

Natural choices to encourage connectivity in the graph is to define ${\mathcal{G}}$ as

- pairs of vertices linked by an arc. only models local interactions;
- all connected subgraphs up to a size L. cumbersome/intractable;
- Il connected subgraphs. intractable.

Question

Can we replace connected subgraphs by another structure which (i) is rich enough to model long-range interactions in the graph, and (ii) leads to computationally feasible penalties?
A solution when the graph is a DAG (Mairal and Yu, 2012)

- **O** Define \mathcal{G} to be the set of all paths in the DAG.
- 2 Define η_g to be $\gamma + |g|$ (the cost of selecting a path g).

$$\varphi(\beta) = (\gamma + 3) + (\gamma + 3)$$

Graph sparsity for DAGs

Decomposability of the weights $\eta_g = \gamma + |g|$

Equivalence to network flows

An optimization problem on paths might be transformed into an equivalent flow problem.

Proposition 1

$$arphi(oldsymbol{eta}) = \min_{f\in\mathcal{F}}\sum_{(u,v)\in E'} f_{uv}c_{uv} \;\; ext{s.t.} \;\; s_j(f) \geq 1, \; orall j\in ext{Supp}(oldsymbol{eta}),$$

Proposition 2

$$\psi(oldsymbol{eta}) = \min_{f \in \mathcal{F}} \sum_{(u, v) \in E'} f_{uv} c_{uv} \quad ext{s.t.} \quad s_j(f) \ge |oldsymbol{eta}_j|, \ \forall j \in \{1, \dots, p\},$$

 $\varphi(\beta)$, $\psi(\beta)$ and similarly the proximal operators, the dual norm of ψ can be computed in polynomial time using network flow optimization.

References I

- R. G. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing. *IEEE Transactions on Information Theory*, 2010. to appear.
- V. Cehver, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery usingmarkov random fields. In *Advances in Neural Information Processing Systems*, 2008.
- J. Huang, Z. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the International Conference on Machine Learning* (*ICML*), 2009.
- L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap and graph Lasso. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2009.
- R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2009. preprint arXiv:0904.3523v1.

References II

- J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. *IEEE Transactions on Image Processing*, 17(1):53–69, January 2008.
- C. A. Micchelli, J. M. Morales, and M. Pontil. A family of penalty functions for structured sparsity. In *Advances in Neural Information Processing Systems*, 2010.
- J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. *IEEE Transactions on Signal Processing*, 41(12): 3445–3462, 1993.
- B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection. *Technometrics*, 47(3):349–363, 2005.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society Series B*, 68:49–67, 2006.

References III

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. 37(6A):3468–3497, 2009.