RNA isoforms discovery from RNA-seq data

 FlipFlop: Fast Lasso based Isoform Prediction as a FLOw ProblemElsa Bernard ${ }^{1}$, Laurent Jacob ${ }^{2}$, Julien Mairal ${ }^{3}$, Jean-Philippe Vert ${ }^{1}$

${ }^{1}$ Mines ParisTech, Institut Curie, INSERM U900
${ }^{2}$ CNRS - LBBE Laboratory, Lyon
${ }^{3}$ Inria - LEAR, Grenoble

Persyvact workshop on probabilistic graphical models - July 2014

Team Players

- E. Bernard, L. Jacob, J. Mairal, and J-P. Vert. Efficient RNA Isoform Identification and Quantification from RNA-Seq Data with Network Flows Bioinformatics. 2014.
- (J. Mairal and B. Yu. Supervised Feature Selection in Graphs with Path Coding Penalties. Journal of Machine Learning Research. 2013).

Disclaimer

There will be a probabilistic model and a graph

$$
\neq
$$
Bayesian graphical model or
Markov Random Field

DNA Transcription/Translation (Central Dogma, 1958)

tronscription

Modern Biology and Challenges

DOE Joint Genome institute

- biology is producing massive amount of data;
- sequencing one genome now costs about $1000 \$$ (vs 0.1 billion $\$$ in 2001), and produces about a few gigabytes of data;
- prediction from DNA data.

Alternative Splicing: 1 Gene $=$ Many Proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

Importance of Alternative Splicing

(Pal et al., 2012)

Opportunities for Drug Developments...

(Pal et al., 2012)

RNA-Seq or Next-Generation Sequencing

What is RNA-Seq?

- RNA-Seq measures abundance of RNA;

Gosgle

"RNA-seq"

Web Images Vidéos Actualités Livres Plus * Outils de recherche

Environ 1600000 résultats (0,36 secondes)
RNA-Seq - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/RNA-Seq * Traduire cette page
RNA-seq (RNA Sequencing), also called "Whole Transcriptome Shotgun Sequencing"
("WTSS"), is a technology that uses the capabilities of next-generation
Introduction - Methods - Analysis - Application to Genomic Medicine

The Isoform Identification and Quantification Problem

Given a biological sample can we:
(1) identify the isoform(s) of each gene present in the sample?
(2) quantify their abundance?

From RNA-Seq Reads to Isoforms

RNA sample transcripts
reads
50-200pb

Transcripts
Quantification using
\quad annotations
- RQuant (Bohnert et al. 2009)
- FluxCapacitor (Montgomery et al. 2010)
- IsoEM (Nicolae et al. 2011)
- eXpress (Roberts et al. 2013)

De Novo approaches

- Trinity (Grabherr et al. 2011)
- OASES (Schultz et al. 2012)
- Kissplice (Sacomoto et al. 2012)

De Novo methods

Genome-Based Methods

Genome-Based Isoforms Reconstruction

Place in the literature

RNA sample transcripts
reads
50－200pb

library preparation

What is new ？

Genome－based
 Transcripts
 Reconstruction

－Scripture（Guttman et al．2010）
－Cufflinks（Trapnell et al．2010）
－IsoLasso（Li et al．2011a）
－NSMAP（Xia et al．2011）
－SLIDE（Li et al．2011b）
－iReckon（Mezlini et al．2012）
－MiTie（Behr et al．2013）
－FlipFIop

Contributions

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem

- adapted to LONG READS
- R package

Contributions

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem
- adapted to LONG READS
\} splicing graph
- R package

Contributions

- NO NEED for FILTERING of candidate isoforms
- FASTER than existing methods that solve the same problem
- adapted to long reads
- R package

Contributions

Home " Bioconductor 2.13 " Software Packages " flipflop

flipflop

Fast lasso-based isoform prediction as a flow problem

Bioconductor version: Release (2.13)
Flipflop discovers which isoforms of a gene are expressed in a given sample together with their abundances, based on RNA-Seq read data.

Author: Elsa Bernard, Laurent Jacob, Julien Mairal and Jean-Philippe Vert
Maintainer: Elsa Bernard <elsa.bernard at mines-paristech.fr>
To install this package, start R and enter:

```
source("http://bioconductor.org/biocLite.R")
biocLite("flipflop")
```


Outline

(1) Formulation as a Path Selection Problem
(2) Sparse Probabilistic Model and Optimization: FlipFlop
(3) Results and Perspectives

Isoforms are Paths in a Graph

- Splicing graph for a gene with 5 exons:

- FlipFlop graph: 1 type of read $\leftrightarrow \mathbf{1}$ node

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph:

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph: one path with abundance β_{1}

Graph adapted to long reads

- Splicing graph for a gene with 5 exons:

- FlipFlop graph: another path with abundance β_{2}...

Select a Small Number of Paths?

n exons $\rightarrow \sim 2^{n}$ paths/candidate isoforms

feature selection problem with ~ 1000 candidates for 10 exons and ~ 1000000 for 20 exons

Minimal path cover

- Cufflinks

Regularization approach

- IsoLasso, NSMAP, SLIDE, iReckon, MiTie, FlipFlop

Select a Small Number of Paths?

Cufflinks strategy
A two-step approach
(1) find a set of minimal paths to explain read positions (independent from read counts)
(2) estimate isoform abundances using read counts

Select a small number of paths?

Regularization approach
(1) Suppose there are candidate isoforms (c large)
(2) Let β the unknown c-dimensional vector of abundance

Select a small number of paths?

Regularization approach

(1) Suppose there are c candidate isoforms (c large)
(2) Let β the unknown c-dimensional vector of abundance
(3) Let $\mathcal{L}(\boldsymbol{\beta})$ quantify whether $\boldsymbol{\beta}$ explains the observed read counts

- e.g., Poisson negative log-likelihood:

$$
\mathcal{L}(\boldsymbol{\beta})=\sum_{\text {node } u}-\log p\left(X_{u}\right) \text { with } X_{u} \sim \mathcal{P}\left(\delta_{u}\right) \text { and } \delta_{u} \propto I_{u} \sum_{\text {path } p \ni u} \boldsymbol{\beta}_{p}
$$

Select a small number of paths?

Regularization approach

(1) Suppose there are c candidate isoforms (c large)
(2) Let β the unknown c-dimensional vector of abundance
(3) Let $\mathcal{L}(\boldsymbol{\beta})$ quantify whether $\boldsymbol{\beta}$ explains the observed read counts

- e.g., Poisson negative log-likelihood:

$$
\mathcal{L}(\boldsymbol{\beta})=\sum_{\text {node } u}-\log p\left(X_{u}\right) \text { with } X_{u} \sim \mathcal{P}\left(\delta_{u}\right) \text { and } \delta_{u} \propto I_{u} \sum_{\text {path } p \ni u} \boldsymbol{\beta}_{p}
$$

(9) Regularization-based approaches try to solve:

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}_{+}^{c}} \mathcal{L}(\boldsymbol{\beta}) \text { such that } \boldsymbol{\beta} \text { is sparse }
$$

Isoform Deconvolution with the ℓ_{1}-norm

ℓ_{1}-regularization
Estimate β sparse by solving:

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}_{+}^{c}} \mathcal{L}(\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1}
$$

with \mathcal{L} a convex loss function.

Computationally challenging:
\rightarrow IsoLasso: strong filtering
\rightarrow NSMAP, SLIDE: number of exons cut-off
FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw Problem
\rightarrow no filtering
\rightarrow no exons restrictions

Regularizing with the ℓ_{1}-norm

The projection onto a convex set is "biased" towards singularities.

Regularizing with the ℓ_{2}-norm

The ℓ_{2}-norm is isotropic.

Regularizing with the ℓ_{∞}-norm

The ℓ_{∞}-norm encourages $\left|\beta_{1}\right|=\left|\beta_{2}\right|$.

In 3D.

Copyright G. Obozinski

Fast Isoform Deconvolution with the lasso

Theoretical (practical) result

The isoform deconvolution problem

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}_{+}^{c}} \mathcal{L}(\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1}
$$

can be solved in polynomial time with the number of nodes of the splicing graph.

Ideas:
(1) the sum of isoform abundances correspond to a flow on the graph
(2) reformulation as a convex cost flow problem (Mairal and Yu, 2012)
(3) recover isoforms by flow decomposition algorithm

Combinations of isoforms are flows

(a) Reads at every node corresponding to one isoform.

(b) Reads at every node after adding another isoform.

- Linear combinations of isoforms \Rightarrow
- Flow value on every edges \Rightarrow Flow Decomposition (linear time algorithm)

Flow value on every edges
Paths with given value/abundance

Flux Capacitor. 2008. A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq. RECOMB-2013.

Equivalent flow problem (simpler!)

- For each edge sum abundances of isoforms that include the edge :

$$
f_{u v}=\sum_{\text {path } p \ni(u, v)} \boldsymbol{\beta}_{p} \text { is a flow }
$$

- Moreover

$$
\|\boldsymbol{\beta}\|_{1}=\sum_{\text {path } p} \boldsymbol{\beta}_{p}=f_{t}
$$

- Therefore

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}_{+}^{c}} \mathcal{L}(\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1} \text { is equivalent to } \min _{f \text { flow }} \tilde{\mathcal{L}}(f)+\lambda f_{t}
$$

Technical details

Poisson Loss (with binary matrix \mathbf{U}):

$$
\mathcal{L}\left(\mathbf{U}^{T} \boldsymbol{\beta}\right)=\sum_{u \in V}\left[N I_{u}\left(\mathbf{U}^{T} \boldsymbol{\beta}\right)_{u}-\mathbf{y}_{u} \log \left(N I_{u}\left(\mathbf{U}^{T} \boldsymbol{\beta}\right)_{u}\right)\right]
$$

Flow Decomposition:

$$
\begin{aligned}
f_{u v} & =\sum_{p \in \mathcal{P}^{\prime}} \boldsymbol{\beta}_{p} \mathbf{1}_{\{(u, v) \in p\}} \\
\Rightarrow \quad f_{v} & =\sum_{u \in V^{\prime}} f_{u v}=\left(\mathbf{U}^{T} \boldsymbol{\beta}\right)_{v}
\end{aligned}
$$

Convex Cost Flow:

$$
\min _{\text {fflow }} \sum_{u \in V}\left[N I_{u} f_{u}-\mathbf{y}_{u} \log \left(f_{u}\right)\right]+\lambda f_{t}
$$

Solved using ε-relaxation method (Bertsekas 1998).

Summary

Isoform Detection=Path Selection Problem
$\sim 2^{n}$ variables (all paths in the splicing graph)

Equivalent Network Flow Problem
$\sim \frac{n^{2}}{2}$ variables (all exons and exon-exon junctions in the splicing graph)

$$
\downarrow
$$

Network Flow Algorithms
Efficient Algorithms! Polynomial Time.

Performance increases with read length

- Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
- Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Performance increases with coverage

- Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
- Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Extension to paired-end reads OK

- Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
- Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Speed Trial

- Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
- Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

GC bias - Precision-Recall curve

- Human Simulation: hg19, chr1, 150bp single-end reads, 2 million, 4140 transcripts.

FluxSimulator, Griebel et al, 2012.
Model selection: set of solutions minimizing $\mathcal{L}(\boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1}$ for different values of $\lambda \rightarrow$ BIC criteria

Real Data OK

- Human: 50 million 75bp paired-end reads.

Conclusion/Discussion

FlipFlop \rightarrow transcripts reconstruction over an exponential number of candidates in polynomial time
(1) Hard combinatorial ill-posed prediction problem!
(2) Model Selection: Cross Validation, Stability Selection?
(3) Multiple-samples: on-going work with promising preliminary results.
(1) Differential Expression testing at the isoform level?

Conclusion/Discussion: get FlipFlop for free!

References

- http://cbio.ensmp.fr/flipflop/
- SParse Modelling Software SPAMS http://lear.inrialpes.fr/people/mairal/software.php
- H. Jiang and W. H. Wong. Bioinformatics, 25(8):1026-1032, 2009.
- C. Trapnell et al. Nat Biotechnol, 28(5):511-515, 2010.
- Z. Xia et al. BMC Bioinformatics, 12:162, 2011.
- W. Li et al. J Comput Biol, 18:1693-1707, 2011.
- J.J. Li et al. P Natl Acad Sci USA, 108(50):19867-19872, 2011.
- R. K. Ahuja et al. Prentice Hall, 1993.
- D. P. Bertsekas. Athena Scientific, 1998.
- J. Mairal and B. Yu. JMLR, 2013.

Precision-Recall curves on real data

Speed comparison on real data

Stability study

Human Simulation: Abundances

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

Simulation: Deviation

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

Part IV: Back to Structured Sparsity (depending on time)

What about more complicated norms?

Copyright G. Obozinski

What about more complicated norms?

Copyright G. Obozinski

Group Lasso

[Turlach et al., 2005, Yuan and Lin, 2006]

$$
\text { the } \ell_{1} / \ell_{q} \text {-norm : } \quad \Omega(\boldsymbol{\beta})=\sum_{g \in \mathcal{G}}\left\|\boldsymbol{\beta}_{g}\right\|_{q} \text {. }
$$

- \mathcal{G} is a partition of $\{1, \ldots, p\}$;
- $q=2$ or $q=\infty$ in practice;
- can be interpreted as the ℓ_{1}-norm of $\left[\left\|\boldsymbol{\beta}_{g}\right\|_{q}\right]_{g \in \mathcal{G}}$.

Structured sparsity with overlapping groups

Warning: Under the name "structured sparsity" appear in fact significantly different formulations!
(1) non-convex

- zero-tree wavelets [Shapiro, 1993];
- predefined collection of sparsity patterns: [Baraniuk et al., 2010];
- select a union of groups: [Huang et al., 2009];
- structure via Markov Random Fields: [Cehver et al., 2008];
(2) convex (norms)
- tree-structure: [Zhao et al., 2009];
- select a union of groups: [Jacob et al., 2009];
- zero-pattern is a union of groups: [Jenatton et al., 2009];
- other norms: [Micchelli et al., 2010].

Group Lasso with overlapping groups

[Jenatton, Audibert, and Bach, 2009]

$$
\Omega(\boldsymbol{\beta})=\sum_{g \in \mathcal{G}}\left\|\boldsymbol{\beta}_{g}\right\|_{q} .
$$

What happens when the groups overlap?

- the pattern of non-zero variables is an intersection of groups;
- the zero pattern is a union of groups.

$$
\Omega(\boldsymbol{\beta})=\|\boldsymbol{\beta}\|_{2}+\left|\boldsymbol{\beta}_{2}\right|+\left|\boldsymbol{\beta}_{3}\right| .
$$

Hierarchical Norms

[Zhao, Rocha, and Yu, 2009]

A node can be active only if its ancestors are active. The selected patterns are rooted subtrees.

Modelling Patterns as Unions of Groups

the non-convex penalty of Huang, Zhang, and Metaxas [2009]

Warning: different point of view than the two previous slides

$$
\varphi(\boldsymbol{\beta}) \triangleq \min _{\mathcal{J} \subseteq \mathcal{G}}\left\{\sum_{g \in \mathcal{J}} \eta_{g} \quad \text { s.t. } \quad \operatorname{Supp}(\boldsymbol{\beta}) \subseteq \bigcup_{g \in \mathcal{J}} g\right\}
$$

- the penalty is non-convex.
- is NP-hard to compute (set cover problem).
- The pattern of non-zeroes in $\boldsymbol{\beta}$ is a union of (a few) groups.

It can be rewritten as a boolean linear program:

$$
\varphi(\boldsymbol{\beta})=\min _{\boldsymbol{x} \in\{0,1\}|\mathcal{G}|}\left\{\boldsymbol{\eta}^{\top} \mathbf{x} \text { s.t. } \quad \mathbf{N} \mathbf{x} \geq \operatorname{Supp}(\boldsymbol{\beta})\right\}
$$

Modelling Patterns as Unions of Groups

convex relaxation and the penalty of Jacob, Obozinski, and Vert [2009]

The penalty of Huang et al. [2009]:

$$
\varphi(\boldsymbol{\beta})=\min _{\boldsymbol{x} \in\{0,1\}}\left\{\boldsymbol{\eta}^{\top} \mathbf{x} \text { s.t. } \quad \mathbf{N} \mathbf{x} \geq \operatorname{Supp}(\boldsymbol{\beta})\right\} .
$$

A convex LP-relaxation:

$$
\psi(\boldsymbol{\beta}) \triangleq \min _{\mathbf{x} \in \mathbb{R}_{+}^{\mathcal{G} \mid}}\left\{\boldsymbol{\eta}^{\top} \mathbf{x} \text { s.t. } \mathbf{N} x \geq|\boldsymbol{\beta}|\right\} .
$$

Lemma: ψ is the penalty of Jacob et al. [2009] with the ℓ_{∞}-norm:

$$
\psi(\boldsymbol{\beta})=\min _{\left(\xi^{g} \in \mathbb{R}^{p}\right)_{g \in \mathcal{G}}} \sum_{g \in \mathcal{G}} \eta_{g}\left\|\xi^{g}\right\|_{\infty} \text { s.t. } \boldsymbol{\beta}=\sum_{g \in \mathcal{G}} \xi^{g} \text { and } \forall g, \operatorname{Supp}\left(\xi^{g}\right) \subseteq g,
$$

Modelling Patterns as Unions of Groups

The norm of Jacob et al. [2009] in 3D

$\psi(\boldsymbol{\beta})$ with $\mathcal{G}=\{\{1,2\},\{2,3\},\{1,3\}\}$.

Graph sparsity
$G=(V, E)$, with $V=\{1, \ldots, p\}$

Graph sparsity

Encouraging patterns with a small number of connected components

Formulation

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \underbrace{R(\boldsymbol{\beta})}_{\text {convex, smooth }}+\underbrace{\lambda \Omega(\boldsymbol{\beta})}_{\text {regularization }}
$$

Ω should encourage connected patterns in the graph.

- the penalty of Huang et al. [2009]:

$$
\varphi(\boldsymbol{\beta})=\min _{\boldsymbol{x} \in\{0,1\}|\mathcal{G}|}\left\{\boldsymbol{\eta}^{\top} \mathbf{x} \text { s.t. } \mathbf{N} \mathbf{x} \geq \operatorname{Supp}(\boldsymbol{\beta})\right\}
$$

- a convex LP-relaxation (penalty of Jacob et al. [2009]):

$$
\psi(\boldsymbol{\beta}) \triangleq \min _{\mathbf{x} \in \mathbb{R}_{+}^{|\mathcal{G}|}}\left\{\boldsymbol{\eta}^{\top} \mathbf{x} \text { s.t. } \mathbf{N} \mathbf{x} \geq|\boldsymbol{\beta}|\right\}
$$

Structured sparsity for graphs

Group structure for graphs.

Natural choices to encourage connectivity in the graph is to define \mathcal{G} as
(1) pairs of vertices linked by an arc. only models local interactions;
(2) all connected subgraphs up to a size L. cumbersome/intractable;
(3) all connected subgraphs. intractable.

Question

Can we replace connected subgraphs by another structure which (i) is rich enough to model long-range interactions in the graph, and (ii) leads to computationally feasible penalties?

A solution when the graph is a DAG (Mairal and Yu, 2012)
(1) Define \mathcal{G} to be the set of all paths in the DAG.
(0) Define η_{g} to be $\gamma+|g|$ (the cost of selecting a path g).

Graph sparsity for DAGs

Decomposability of the weights $\eta_{g}=\gamma+|g|$

Equivalence to network flows

An optimization problem on paths might be transformed into an equivalent flow problem.

Proposition 1

$$
\varphi(\boldsymbol{\beta})=\min _{f \in \mathcal{F}} \sum_{(u, v) \in E^{\prime}} f_{u v} c_{u v} \text { s.t. } s_{j}(f) \geq 1, \forall j \in \operatorname{Supp}(\boldsymbol{\beta}),
$$

Proposition 2

$$
\psi(\boldsymbol{\beta})=\min _{f \in \mathcal{F}} \sum_{(u, v) \in E^{\prime}} f_{u v} c_{u v} \text { s.t. } s_{j}(f) \geq\left|\boldsymbol{\beta}_{j}\right|, \forall j \in\{1, \ldots, p\},
$$

$\varphi(\boldsymbol{\beta}), \psi(\boldsymbol{\beta})$ and similarly the proximal operators, the dual norm of ψ can be computed in polynomial time using network flow optimization.

References I

R. G. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing. IEEE Transactions on Information Theory, 2010. to appear.
V. Cehver, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery usingmarkov random fields. In Advances in Neural Information Processing Systems, 2008.
J. Huang, Z. Zhang, and D. Metaxas. Learning with structured sparsity. In Proceedings of the International Conference on Machine Learning (ICML), 2009.
L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlap and graph Lasso. In Proceedings of the International Conference on Machine Learning (ICML), 2009.
R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2009. preprint arXiv:0904.3523v1.

References II

J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1):53-69, January 2008.
C. A. Micchelli, J. M. Morales, and M. Pontil. A family of penalty functions for structured sparsity. In Advances in Neural Information Processing Systems, 2010.
J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12): 3445-3462, 1993.
B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection. Technometrics, 47(3):349-363, 2005.
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68:49-67, 2006.

References III

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. 37(6A):3468-3497, 2009.

