Rank-based multiple change-points detection in multiple time series

Flore Harlé
Sophie Achard, Gipsa-lab Florent Chatelain, Gipsa-lab Cédric Gouy-Pailler, CEA-List

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model

- Change-point model

■ The Wilcoxon rank-sum test

- Prior on indicators
- Posterior distribution and implementation

3 Experiments

- Simulations
- Applications on real data

4 Conclusion

5 References

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model
■ Change-point model

- The Wilcoxon rank-sum test
- Prior on indicators
- Posterior distribution and implementation

3 Experiments
■ Simulations

- Applications on real data

4 Conclusion

5 References

> Objectives:

- infer the functional links
- detect events

Graph building

Mutual information, correlations, indicators on temporal windows...
[XKH11], [CAMGP11], [ASW ${ }^{+}$06]
\rightarrow functional links extracted
\rightarrow no temporal information

Multivariate analysis
PCA, ICA, dictionnaries, statistical tests... [LYFLLC11]
\rightarrow excellent temporal resolution
\rightarrow poor spatial information

segmentation of genetic data [BV11]

> Objectives:

- infer the functional links
- detect events

Multivariate analysis
PCA, ICA, dictionnaries, statistical tests... [LYFLLC11]
\rightarrow excellent temporal resolution
\rightarrow poor spatial information

segmentation of genetic data [BV11]

> Objectives:

- infer the functional links
- detect events

Multivariate analysis
PCA, ICA, dictionnaries, statistical tests... [LYFLLC11]
\rightarrow excellent temporal resolution
\rightarrow poor spatial information

segmentation of genetic data [BV11]
> Our approach :

- detection of events (change-points), using structural priors
- functional relationships inference from a temporal analysis

Goal: off-line multiple segmentation of multivariate time series

$$
>\text { observations } \boldsymbol{X}(K \times N)
$$

Approach: statistical test, Bayesian framework, signals dependencies

Bayes' theorem:

$$
f(\boldsymbol{R} \mid \boldsymbol{X}) \propto L(\boldsymbol{X} \mid \boldsymbol{R}) f(\boldsymbol{R})
$$

$>$ posterior $f(\boldsymbol{R} \mid \boldsymbol{X})$: estimation of \boldsymbol{R}
$>$ likelihood $L(\boldsymbol{X} \mid \boldsymbol{R})$: based on a robust statistical test
$>$ prior $f(\boldsymbol{R})$: introduction of the possible links between signals

Goal: off-line multiple segmentation of multivariate time series

> observations $\boldsymbol{X}(K \times N)$
$>$ indicators $\boldsymbol{R}(K \times N)$

Approach: statistical test, Bayesian framework, signals dependencies

Bayes' theorem:

$$
f(\boldsymbol{R} \mid \boldsymbol{X}) \propto L(\boldsymbol{X} \mid \boldsymbol{R}) f(\boldsymbol{R})
$$

$>$ posterior $f(\boldsymbol{R} \mid \boldsymbol{X})$: estimation of \boldsymbol{R}
$>$ likelihood $L(\boldsymbol{X} \mid \boldsymbol{R})$: based on a robust statistical test
$>$ prior $f(\boldsymbol{R})$: introduction of the possible links between signals

$$
f(\boldsymbol{R} \mid \boldsymbol{X}) \propto L(\boldsymbol{X} \mid \boldsymbol{R}) f(\boldsymbol{R})
$$

observations $\boldsymbol{X}(K \times N)$
$x_{j, i}$ mutually independent
indicators $\boldsymbol{R}(K \times N)$
$r_{j, i}= \begin{cases}1 & \text { if } x_{j, i} \text { is a change-point }\left(H_{1}\right), \\ 0 & \text { otherwise }\left(H_{0}\right),\end{cases}$ for all $1 \leq j \leq K, 1 \leq i \leq N$
by convention $r_{1}=r_{N}=1$.

$$
R_{i}=\epsilon=(0,1,0)^{T}
$$

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model
■ Change-point model

- The Wilcoxon rank-sum test
- Prior on indicators
- Posterior distribution and implementation

3 Experiments
■ Simulations

- Applications on real data

4 Conclusion
5 References

Change-point model for $L_{*}(\boldsymbol{X} \mid \boldsymbol{R})$

$>R$ defines segments for each signal
$>$ for each $x_{j, i} \in S \rightarrow$ compute p-value $p_{j, i}$, by a statistical test on S
> p-values:

- under $H_{0}: x_{j, i}$ not a change-point, $r_{j, i}=0, p_{j, i} \sim \mathcal{U}_{[0,1]}$ [SSC99, SBB01]
- under $H_{1}: x_{j, i}$ change-point, $r_{j, i}=1, p_{j, i}$, unknown distribution under H_{1} : choice of $\mathcal{B e}(\gamma, 1)$ [SBB01] parameter $\gamma \in(0,1)$:
- function of an acceptance level α, $f(\alpha \mid r=1)=f(\alpha \mid r=0)$
- γ is therefore the unique solution in $(0,1)$ of
 $\gamma \alpha^{\gamma-1}=1, \forall \alpha \in\left(0, e^{-1}\right)$
$>$ marginal densities of the p-values, taken as random variables:

$$
f\left(p_{j, i} \mid \boldsymbol{R}\right)= \begin{cases}\mathbb{1}_{[0,1]}\left(p_{j, i}\right) & \text { if } r_{j, i}=0\left(H_{0}, x_{j, i} \text { is not a change-point }\right) \\ \gamma p_{j, i}^{\gamma-1} \mathbb{1}_{[0,1]}\left(p_{j, i}\right) & \text { if } r_{j, i}=1\left(H_{1}, x_{j, i} \text { is a change-point }\right)\end{cases}
$$

> composite marginal likelihood:

$$
L_{*}(\boldsymbol{X} \mid \boldsymbol{R})=\prod_{j=1}^{K} \prod_{i=2}^{N-1}\left(\gamma p_{j, i}^{\gamma-1}\right)^{r_{j, i}}
$$

> The Wilcoxon / Mann-Whitney rank-sum test is chosen to compute the p-values [Wil45].
$>$ For two segments Y and Z :

- compute the statistic $U=\min \left(U_{Y}, U_{Z}\right)$:
$Y=\left(y_{1}, \ldots, y_{M}\right)$
rank sum R_{Y} in sorted vector (Y, Z)

$$
U_{Y}=M N \frac{M(M+1)}{2}-R_{Y}
$$

$Z=\left(z_{1}, \ldots, z_{N}\right)$
rank sum R_{Z} in sorted vector (Y, Z)

$$
U_{Z}=M N \frac{N(N+1)}{2}-R_{Z}
$$

- tabulated p-values or normal approximation for large samples

$$
z=\frac{U-m_{U}}{\sigma_{U}}, \quad \text { with } \quad m_{U}=\frac{M N}{2}, \quad \sigma_{U}=\sqrt{\frac{M N(M+N+1)}{12}}
$$

> High p-values when the differences between the pairs of observations from Y and Z are distributed around $0\left(H_{0}\right) \rightarrow$ the data are not assumed to be normally distributed.
> Indicators matrix:

$$
\boldsymbol{R}=\left(\begin{array}{lll|l}
\ldots & 0 \ldots 1 \ldots 0 \ldots & \ldots 0 \ldots \\
\ldots & 0 \ldots 0 \ldots 0 \ldots & \ldots 0 \ldots \\
\cdots & 1 \ldots 0 \ldots 0 \ldots & 0 \ldots 0 \ldots
\end{array}\right) \quad R_{i}=\epsilon=(1,1,0,0)^{T}
$$

> Dependency: if the signal k depends on the signal l, then $R_{k, i}=R_{l, i}$ with a high probability
P_{ϵ} is the probability to observe the configuration ϵ in $\boldsymbol{R} \rightarrow \boldsymbol{P}=\left(P_{\epsilon}\right)_{\epsilon \in \mathcal{E}}$
$>\left(R_{i}\right)_{2 \leq i \leq N-1}$ are assumed to be a priori independent: $f(\boldsymbol{R})=\prod_{i=2}^{N-1} f\left(R_{i}\right)$
> prior on indicators: $f(\boldsymbol{R}, \boldsymbol{P}) \propto f(\boldsymbol{R} \mid \boldsymbol{P}) f(\boldsymbol{P})$, with:

- $f(\boldsymbol{R} \mid \boldsymbol{P})=\prod_{\epsilon \in \mathcal{E}} P_{\epsilon}^{S_{\epsilon}(\boldsymbol{R})}, S_{\epsilon}(\boldsymbol{R})$ is the number of times that the configuration ϵ appears in the columns of R
- vague prior for $\boldsymbol{P}: \mathcal{D}_{L}(d)$ [DTD07]
> finally:

$$
f(\boldsymbol{R}, \boldsymbol{P}) \propto \prod_{\epsilon \in \mathcal{E}} P_{\epsilon}^{S_{\epsilon}(\boldsymbol{R})+d_{\epsilon}-1}
$$

Posterior distribution $f(\boldsymbol{R} \mid \boldsymbol{X})$ and implementation

Posterior distribution

> From the pseudo likelihood and the prior, the posterior expressed as:

$$
\begin{aligned}
f(\boldsymbol{R}, \boldsymbol{P} \mid \boldsymbol{X}) & \propto L_{*}(\boldsymbol{X} \mid \boldsymbol{R}) f(\boldsymbol{R} \mid \boldsymbol{P}) f(\boldsymbol{P}), \\
& \propto\left(\prod_{j=1}^{K} \prod_{i=2}^{N-1}\left(\gamma p_{j, i}^{\gamma-1}\right)^{r_{j, i}}\right)\left(\prod_{\epsilon \in \mathcal{E}} P_{\epsilon}^{S_{\epsilon}(\boldsymbol{R})+d_{\epsilon}-1}\right)
\end{aligned}
$$

$>$ The vector of hyperparameters P_{ϵ} can be integrated out:

$$
f(\boldsymbol{R} \mid \boldsymbol{X}) \propto\left(\prod_{j=1}^{K} \prod_{i=2}^{N-1}\left(\gamma p_{j, i}^{\gamma-1}\right)^{r_{j, i}}\right) \times \frac{\prod_{\epsilon \in \mathcal{E}} \Gamma\left(S_{\epsilon}(\boldsymbol{R})+d_{\epsilon}\right)}{\Gamma(N+L)}
$$

Algorithm

$>$ Estimation of the maximum a posteriori of R
> Monte Carlo by Markov Chain method
$>$ Gibbs sampling to draw the indicators matrix \boldsymbol{R}, column by column

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model
■ Change-point model

- The Wilcoxon rank-sum test
- Prior on indicators
- Posterior distribution and implementation

3 Experiments
■ Simulations

- Applications on real data

4 Conclusion

5 References

Choice of the Gibbs sampler

> Single change-point in univariate signal
> Several noise levels:

$$
S N R=10 \log \frac{\left(\mu_{k}-\mu_{l}\right)^{2}}{\sigma^{2}}
$$

> Detection performances:

$$
\text { recall }=\frac{T P}{T P+F N} \quad \text { precision }=\frac{T P}{T P+F P}
$$

> Gibbs sampler: 2 strategies

- blocked Gibbs sampling

- conditional probabilities does not form a compatible joint model \rightarrow pseudo Gibbs sampling

$$
\begin{aligned}
R & =\left(\ldots, 0,1 \quad, 0, \ldots, 0, r_{i-1}, r_{i}, r_{i+1}, 0, \ldots, 0,1,0, \ldots\right) \\
P_{\text {val }} & =\left(\ldots, \cdot, p_{i^{-}}, \cdot, \ldots, \cdot, p_{i-1}, p_{i}, p_{i+1}, \cdot, \ldots, \cdot, p_{i^{+}}, \cdot, \ldots\right)
\end{aligned}
$$

Choice of the Gibbs sampler

> Single change-point in univariate signal
> Several noise levels:

$$
S N R=10 \log \frac{\left(\mu_{k}-\mu_{l}\right)^{2}}{\sigma^{2}}
$$

> Detection performances:

$$
\text { recall }=\frac{T P}{T P+F N} \quad \text { precision }=\frac{T P}{T P+F P}
$$

> Gibbs sampler: 2 strategies

- blocked Gibbs sampling
- conditional probabilities does not form a compatible joint model \rightarrow pseudo Gibbs sampling

$$
\begin{aligned}
R & =\left(\ldots, 0,1,0, \ldots, 0, r_{i}, 0, \ldots, 0,1,0, \ldots\right) \\
P_{\text {val }} & =\left(\ldots, \cdot, p_{i^{-}}, \cdot, \ldots, \cdot, p_{i}, \cdot, \ldots, \cdot, p_{i^{+}}, \cdot, \ldots\right)
\end{aligned}
$$

Impact of data distribution

Comparison with the fused lasso [Tib11] $(\lambda=22.3)$ and the Bernoulli Gaussian model

Observations on segment k :
$\mathcal{N}\left(\mu_{k}, \sigma\right)$

position ± 5 points

$$
t\left(\nu, \mu_{k}, \sqrt{\frac{\nu}{\nu-2}}\right)
$$

exact position
position ± 5 points

Control of the false discovery rate (FDR)

Definition:
> multiple hypothesis testing
$>$ maximizing the probability of detecting the true positive by controlling the false positives
$F D R=E\left[\frac{V}{R \vee 1}\right], V=$ number of false positives, $R=$ number of positives

Control of the FDR:

$>m$ tests independent \rightarrow Benjamini-Hochberg procedure [BH95]
$>$ our model:

- p-values computed by the statistical test highly dependent
- control by acceptance level α
acceptance level α :

$$
\begin{aligned}
& f(\alpha \mid r=1)=f(\alpha \mid r=0) \\
& \gamma \alpha^{\gamma-1}=1
\end{aligned}
$$

$$
L_{*}(X \mid R)=\prod_{2=1}^{N-1}\left(\gamma p_{i}^{\gamma-1}\right)^{r_{i}}
$$

Figure: $F D R=f(\alpha), 320$ points, 15 change-points, SNR $=5 \mathrm{~dB}$

Household electrical power consumption

> 4 time series
$>$ Dependencies known \rightarrow noninformative or informative prior on P

$$
\boldsymbol{R}=\left(\begin{array}{cc}
\ldots & 1 \ldots 1 \ldots 0 \ldots 1 \ldots 1 \ldots \\
\ldots & 0 \ldots 0 \ldots 1 \ldots 1 \ldots 0 \ldots \\
\ldots & 1 \ldots 0 \ldots 0 \ldots 0 \ldots 0 \ldots \\
\ldots & 0 \ldots 1 \ldots 0 \ldots 0 \ldots 1 \ldots
\end{array}\right)
$$

Noninformative prior

Household electrical power consumption

> 4 time series
$>$ Dependencies known \rightarrow noninformative or informative prior on P

$$
R=\left(\begin{array}{cc}
\ldots & 1 \ldots 1 \ldots 0 \ldots 1 \ldots 1 \ldots \\
\ldots & 0 \ldots 0 \ldots 0 \ldots 1 \ldots 0 \ldots \\
\ldots & 1 \ldots 0 \ldots 0 \ldots 0 \ldots 0 \ldots \\
\ldots & 0 \ldots 1 \ldots 0 \ldots 0 \ldots 1 \ldots
\end{array}\right)
$$

Informative prior

Array Comparative Genomic Hybridization

$>$ Tumorous cells: deregulations in DNA copy number
$>$ Samples: transcription of the chromosomes of patients, labelled with red fluorescent molecules
$>$ Hybridization with reference gene copies, labelled with green fluorescent molecules
$>$ Measure of the $\log _{2}$-ratio
$>$ Objective: to localize the DNA portions over or under-expressed [AGH ${ }^{+}$02, BV11]

Bernoulli detector model, all patients jointly

$>$ Tumorous cells: deregulations in DNA copy number
$>$ Samples: transcription of the chromosomes of patients, labelled with red fluorescent molecules
$>$ Hybridization with reference gene copies, labelled with green fluorescent molecules
$>$ Measure of the $\log _{2}$-ratio
$>$ Objective: to localize the DNA portions over or under-expressed [AGH ${ }^{+}$02, BV11]

Group fused lasso [BV11], all patients jointly

Array Comparative Genomic Hybridization

$>$ Tumorous cells: deregulations in DNA copy number
$>$ Samples: transcription of the chromosomes of patients, labelled with red fluorescent molecules
$>$ Hybridization with reference gene copies, labelled with green fluorescent molecules
$>$ Measure of the $\log _{2}$-ratio
$>$ Objective: to localize the DNA portions over or under-expressed [AGH ${ }^{+}$02, BV11]

position on sequence

Fused lasso [Tib11], $\lambda=3.0$, each patient 53 individually

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model
■ Change-point model

- The Wilcoxon rank-sum test
- Prior on indicators
- Posterior distribution and implementation

3 Experiments
■ Simulations

- Applications on real data

4 Conclusion
5 References

Conclusion

Advantages

$>$ non parametric, robust statistical test, high power for the change-point model we choose
$>$ weak assumptions on the data distribution
$>$ flexible dependency structure learning, or used to improve the segmentation
$>$ FDR controlled by α (empirically)

Drawbacks, limitations

$>$ high complexity (linear with the number of configurations ϵ), MCMC method \rightarrow slow, can't handle large number of time series
$>$ composite marginal likelihood, dependency between the p-values
$>$ approximation by the pseudo Gibbs sampler
$>$ control of the FDR not formalized

Future work

$>$ higher dimensions
> likelihood:

- other statistical tests (Student's t-test, Welch's t-test...)
- semi-parametric approach with the empirical likelihood [Owe10]
> dependency structure:
- estimation of the causality from \widehat{P}
- graphical representation

Thank you for your attention!

1 Introduction

- Context
- Problem formulation

2 The Bernoulli detector model
■ Change-point model

- The Wilcoxon rank-sum test
- Prior on indicators
- Posterior distribution and implementation

3 Experiments
■ Simulations

- Applications on real data

4 Conclusion

5 References
[AGH ${ }^{+}$02] David B Allison, Gary L Gadbury, Moonseong Heo, José R Fernández, Cheol-Koo Lee, Tomas A Prolla, and Richard Weindruch, A mixture model approach for the analysis of microarray gene expression data, Computational Statistics \& Data Analysis 39 (2002), no. 1, 1-20.
[ASW ${ }^{+}$06] Sophie Achard, Raymond Salvador, Brandon Whitcher, John Suckling, and Ed Bullmore, A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs, The Journal of Neuroscience 26 (2006), no. 1, 63-72.
[BH95] Yoav Benjamini and Yosef Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological) (1995), 289-300.
[BV11] K. Bleakley and J.-P. Vert, The group fused lasso for multiple change-point detection, ArXiv e-prints (2011).
[CAMGP11] F. Chatelain, S. Achard, O. Michel, and C. Gouy-Pailler, Multivariate approach for brain decomposable connectivity networks, Statistical Signal Processing Workshop (SSP), 2011 IEEE, june 2011, pp. 817-820.
[DTD07] N. Dobigeon, J. Y Tourneret, and Manuel Davy, Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a bayesian sampling approach, Signal Processing, IEEE Transactions on 55 (2007), no. 4, 1251-1263.
[LYFLLC11] Alexandre Lung-Yut-Fong, Céline Lévy-Leduc, and Olivier Cappé, Homogeneity and change-point detection tests for multivariate data using rank statistics, 2011.
[Owe10] A.B. Owen, Empirical likelihood, Chapman \& Hall/CRC Monographs on Statistics \& Applied Probability, Taylor \& Francis, 2010.
[SBB01] Thomas Sellke, M. J. Bayarri, and James O. Berger, Calibration of p Values for Testing Precise Null Hypotheses, The American Statistician 55 (2001), no. 1, 62-71.
[SSC99] Harold Sackrowitz and Ester Samuel-Cahn, P values as random variables-expected p values, The American Statistician 53 (1999), no. 4, 326-331.
[Tib11] Ryan Joseph Tibshirani, The solution path of the generalized lasso, Stanford University, 2011.
[Wil45] Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics 1 (1945), no. 6, 80-83.
[XKH11] K.S. Xu, M. Kliger, and A.O. Hero, A shrinkage approach to tracking dynamic networks, Statistical Signal Processing Workshop (SSP), 2011 IEEE, june 2011, pp. 517-520.

