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Context

> Objectives:
• infer the functional

links
• detect events

capteurs signaux

Graph building
Mutual information, correlations,
indicators on temporal windows...
[XKH11], [CAMGP11], [ASW+06]
→ functional links extracted
→ no temporal information

Multivariate analysis
PCA, ICA, dictionnaries, statistical
tests... [LYFLLC11]
→ excellent temporal resolution
→ poor spatial information

segmentation of genetic data [BV11]

> Our approach :

• detection of events (change-points), using structural priors
• functional relationships inference from a temporal analysis
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Problem formulation

Goal: off-line multiple segmentation of multivariate time series

0
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> observations X (K ×N)

> indicators R (K ×N)

Approach: statistical test, Bayesian framework, signals dependencies
Bayes’ theorem:

f(R|X) ∝ L(X|R)f(R)

> posterior f(R|X): estimation of R
> likelihood L(X|R): based on a robust statistical test
> prior f(R): introduction of the possible links between signals
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Notations

f(R|X) ∝ L(X|R)f(R)

observations X (K ×N)
xj,i mutually independent

0

1

2

0

1

2

0 100 200

0

10

20

segment

indicators R (K ×N)

rj,i =
{

1 if xj,i is a change-point (H1),
0 otherwise (H0),

for all 1 ≤ j ≤ K, 1 ≤ i ≤ N
by convention r1 = rN = 1.

R =

( 10 . . . 010 . . . 0 0 0 . . . 000 . . . 01
10 . . . 000 . . . 0 1 0 . . . 010 . . . 01
10 . . . 010 . . . 0 0 0 . . . 000 . . . 01

)

Ri = ε = (0, 1, 0)T
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Change-point model for L∗(X|R)

> R defines segments for each signal
> for each xj,i ∈ S → compute p-value pj,i, by a statistical test on S
> p-values:

• under H0: xj,i not a change-point, rj,i = 0, pj,i ∼ U[0,1]
[SSC99, SBB01]
• under H1: xj,i change-point, rj,i = 1, pj,i, unknown

distribution under H1: choice of Be(γ, 1) [SBB01]
parameter γ ∈ (0, 1):
• function of an acceptance level α,
f(α|r = 1) = f(α|r = 0)• γ is therefore the unique solution in (0, 1) of
γαγ−1 = 1, ∀α ∈ (0, e−1)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
pval from Wilcoxon test

0

1
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f(
p
va
l|R

)

Change-point probability, Bernoulli Detector Model

α=0.01

α=0.05

α=0.10

> marginal densities of the p-values, taken as random variables:

f(pj,i|R) =
{

1[0,1](pj,i) if rj,i = 0 (H0, xj,i is not a change-point),
γpγ−1

j,i 1[0,1](pj,i) if rj,i = 1 (H1, xj,i is a change-point)

> composite marginal likelihood:

L∗(X|R) =
K∏
j=1

N−1∏
i=2

(
γpγ−1

j,i

)rj,i
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The Wilcoxon rank-sum test

> The Wilcoxon / Mann-Whitney rank-sum test is chosen to compute the
p-values [Wil45].

> For two segments Y and Z :
• compute the statistic U = min(UY , UZ):

Y = (y1, . . . , yM )
rank sum RY in sorted vector (Y, Z)

UY = MN
M(M + 1)

2
− RY

0 5 10 15 20 250.5

0.0

1.5

Z = (z1, . . . , zN )
rank sum RZ in sorted vector (Y, Z)

UZ = MN
N(N + 1)

2
− RZ

• tabulated p-values or normal approximation for large samples

z =
U −mU
σU

, with mU =
MN

2
, σU =

√
MN(M +N + 1)

12
> High p-values when the differences between the pairs of observations from
Y and Z are distributed around 0 (H0)→ the data are not assumed to be
normally distributed.
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Prior on indicators f(R)

> Indicators matrix:

R =

 . . . 0 . . . 1 . . . 0 . . .1 . . . 0 . . .
. . . 0 . . . 0 . . . 0 . . .1 . . . 0 . . .
. . . 1 . . . 0 . . . 0 . . .0 . . . 0 . . .
. . . 0 . . . 1 . . . 0 . . .0 . . . 1 . . .

 Ri = ε = (1, 1, 0, 0)T

> Dependency: if the signal k depends on the signal l, then Rk,i = Rl,i with a
high probability
Pε is the probability to observe the configuration ε in R→ P = (Pε)ε∈E

> (Ri)2≤i≤N−1 are assumed to be a priori independent: f(R) =
∏N−1
i=2 f(Ri)

> prior on indicators: f(R,P ) ∝ f(R|P )f(P ), with:
• f(R|P ) =

∏
ε∈E P

Sε(R)
ε , Sε(R) is the number of times that the configuration ε

appears in the columns of R
• vague prior for P : DL(d) [DTD07]

> finally:
f(R,P ) ∝

∏
ε∈E

PSε(R)+dε−1
ε

Flore Harlé Rank-based multiple change-points detection in multiple time series 7 / 17



Posterior distribution f(R|X) and implementation

Posterior distribution
> From the pseudo likelihood and the prior, the posterior expressed as:

f(R,P |X) ∝ L∗(X|R)f(R|P )f(P ),

∝

(
K∏
j=1

N−1∏
i=2

(
γpγ−1

j,i

)rj,i)(∏
ε∈E

PSε(R)+dε−1
ε

)
> The vector of hyperparameters Pε can be integrated out:

f(R|X) ∝

(
K∏
j=1

N−1∏
i=2

(γpγ−1
j,i )rj,i

)
×
∏
ε∈E Γ(Sε(R) + dε)

Γ(N + L) .

Algorithm
> Estimation of the maximum a posteriori of R
> Monte Carlo by Markov Chain method
> Gibbs sampling to draw the indicators matrix R, column by column
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Choice of the Gibbs sampler

> Single change-point in univariate signal
> Several noise levels:

SNR = 10 log (µk − µl)2

σ2 .

> Detection performances:

recall = TP

TP + FN
precision = TP

TP + FP

> Gibbs sampler: 2 strategies
• blocked Gibbs sampling
• conditional probabilities does not form a

compatible joint model→ pseudo Gibbs
sampling

R = (..., 0, 1 , 0, ..., 0, ri−1, ri, ri+1, 0, ..., 0, 1 , 0, ...)
Pval = (..., ·, pi− , ·, ..., ·, pi−1, pi, pi+1, ·, ..., ·, pi+ , ·, ...)
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Impact of data distribution

Comparison with the fused lasso [Tib11] (λ = 22.3) and the Bernoulli Gaussian
model
Observations on segment k:

N (µk, σ)
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Control of the false discovery rate (FDR)

Definition:
> multiple hypothesis testing
> maximizing the probability of detecting the true positive by controlling the

false positives

FDR = E
[

V

R ∨ 1

]
, V = number of false positives, R = number of positives

Control of the FDR:
> m tests independent→ Benjamini-Hochberg procedure [BH95]
> our model:

• p-values computed by the statistical test highly dependent
• control by acceptance level α

acceptance level α:
f(α|r = 1) = f(α|r = 0)
γαγ−1 = 1

L∗(X|R) =
N−1∏
2=1

(
γpγ−1

i

)ri
Figure: FDR = f(α), 320 points,
15 change-points, SNR = 5 dB
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Household electrical power consumption

> 4 time series
> Dependencies known→ noninformative or informative prior on P

R =

 . . . 1 . . . 1 . . . 0 . . . 1 . . . 1 . . .
. . . 0 . . . 0 . . . 1 . . . 1 . . . 0 . . .
. . . 1 . . . 0 . . . 0 . . . 0 . . . 0 . . .
. . . 0 . . . 1 . . . 0 . . . 0 . . . 1 . . .
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Array Comparative Genomic Hybridization

> Tumorous cells: deregulations in DNA copy number
> Samples: transcription of the chromosomes of patients, labelled with red fluorescent molecules
> Hybridization with reference gene copies, labelled with green fluorescent molecules
> Measure of the log2-ratio
> Objective: to localize the DNA portions over or under-expressed [AGH+02, BV11]

Bernoulli detector model, all
patients jointly
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> Objective: to localize the DNA portions over or under-expressed [AGH+02, BV11]

Fused lasso [Tib11], λ = 3.0,
each patient 53 individually

Flore Harlé Rank-based multiple change-points detection in multiple time series 13 / 17



Plan

1 Introduction
Context
Problem formulation

2 The Bernoulli detector model
Change-point model
The Wilcoxon rank-sum test
Prior on indicators
Posterior distribution and implementation

3 Experiments
Simulations
Applications on real data

4 Conclusion

5 References

Flore Harlé Rank-based multiple change-points detection in multiple time series 13 / 17



Conclusion

Advantages

> non parametric, robust statistical test, high power for the change-point model we choose
> weak assumptions on the data distribution
> flexible dependency structure learning, or used to improve the segmentation
> FDR controlled by α (empirically)

Drawbacks, limitations

> high complexity (linear with the number of configurations ε), MCMC method→ slow, can’t handle
large number of time series

> composite marginal likelihood, dependency between the p-values
> approximation by the pseudo Gibbs sampler
> control of the FDR not formalized

Future work

> higher dimensions
> likelihood:

• other statistical tests (Student’s t-test, Welch’s t-test...)• semi-parametric approach with the empirical likelihood [Owe10]

> dependency structure:
• estimation of the causality from P̂• graphical representation
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Thank you for your attention !
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